Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gorp, Hans Van

  • Google
  • 2
  • 31
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films33citations
  • 2018Effect of Source on the Properties and Behavior of Cellulose Nanocrystal Suspensions39citations

Places of action

Chart of shared publication
Thielemans, Wim
1 / 14 shared
Kang, Kyongok
1 / 3 shared
Eyley, Samuel
1 / 6 shared
Schütz, Christina
1 / 5 shared
Gençer Phd, Mrsc, Alican
1 / 3 shared
Rosenfeldt, Sabine
1 / 13 shared
Rie, Jonas Van
1 / 3 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Thielemans, Wim
  • Kang, Kyongok
  • Eyley, Samuel
  • Schütz, Christina
  • Gençer Phd, Mrsc, Alican
  • Rosenfeldt, Sabine
  • Rie, Jonas Van
OrganizationsLocationPeople

article

An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films

  • Yang, Peidong
  • Chernyshov, Dmitry
  • Genoe, Jan
  • Gehlhaar, Robert
  • Speybroeck, Veronique Van
  • Braeckevelt, Tom
  • Feyter, Steven De
  • Gorp, Hans Van
  • Walsh, Aron
  • Huang, Haowei
  • Roeffaers, Maarten
  • Debroye, Elke
  • Basak, Shreya
  • Puech, Pascal
  • Prakasam, Vittal
  • Solano Minuesa, Eduardo
  • Steele, Julian
  • Pintor-Monroy, Maria Isabel
  • Rogge, Sven M. J.
  • Hofkens, Johan
  • Fleury, Guillaume
  • Jin, Handong
  • Degutis, Giedrius
  • Lin, Zhenni
  • Yuan, Haifeng
Abstract

<jats:title>Abstract</jats:title><jats:p>The black perovskite phase of CsPbI<jats:sub>3</jats:sub> is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI<jats:sub>2</jats:sub>-based interfacial microstructure into otherwise-unstable CsPbI<jats:sub>3</jats:sub> perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI<jats:sub>3</jats:sub> perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI<jats:sub>3</jats:sub> perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • microstructure
  • phase
  • thin film
  • phase transition
  • interfacial