Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barriocanal, Javier Garcia

  • Google
  • 1
  • 11
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Room-temperature valence transition in a strain-tuned perovskite oxide10citations

Places of action

Chart of shared publication
Figari, Lucca
1 / 2 shared
Jacobson, Andrew
1 / 2 shared
Mkhoyan, Andre
1 / 5 shared
Cheng, Huikai
1 / 2 shared
Birol, Turan
1 / 2 shared
Quarterman, Patrick
1 / 3 shared
Chaturvedi, Vipul
1 / 2 shared
Gautreau, Dominique
1 / 1 shared
Korostynski, Caroline
1 / 3 shared
Charlton, Timothy
1 / 1 shared
Postiglione, William
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Figari, Lucca
  • Jacobson, Andrew
  • Mkhoyan, Andre
  • Cheng, Huikai
  • Birol, Turan
  • Quarterman, Patrick
  • Chaturvedi, Vipul
  • Gautreau, Dominique
  • Korostynski, Caroline
  • Charlton, Timothy
  • Postiglione, William
OrganizationsLocationPeople

article

Room-temperature valence transition in a strain-tuned perovskite oxide

  • Figari, Lucca
  • Jacobson, Andrew
  • Mkhoyan, Andre
  • Cheng, Huikai
  • Barriocanal, Javier Garcia
  • Birol, Turan
  • Quarterman, Patrick
  • Chaturvedi, Vipul
  • Gautreau, Dominique
  • Korostynski, Caroline
  • Charlton, Timothy
  • Postiglione, William
Abstract

<jats:title>Abstract</jats:title><jats:p>Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr<jats:sub>1-<jats:italic>x</jats:italic></jats:sub>Ca<jats:sub><jats:italic>x</jats:italic></jats:sub>CoO<jats:sub>3</jats:sub>). Here, we show that in thin films of the complex perovskite (Pr<jats:sub>1-<jats:italic>y</jats:italic></jats:sub>Y<jats:sub><jats:italic>y</jats:italic></jats:sub>)<jats:sub>1-<jats:italic>x</jats:italic></jats:sub>Ca<jats:sub><jats:italic>x</jats:italic></jats:sub>CoO<jats:sub>3-δ</jats:sub>, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • thin film
  • cobalt
  • Praseodymium