Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neto, Eduardo H. Da Silva

  • Google
  • 1
  • 13
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ7citations

Places of action

Chart of shared publication
Walker, Morgan
1 / 1 shared
Boyle, Timothy J.
1 / 1 shared
Lee, Jun-Sik
1 / 1 shared
Basak, Rourav
1 / 1 shared
Maple, M. Brian
1 / 4 shared
Frano, Alex
1 / 2 shared
Moir, Camilla M.
1 / 1 shared
Sasmal, Kalyan
1 / 2 shared
Lu, Yi
1 / 2 shared
Ruiz, Alejandro
1 / 1 shared
He, Yu
1 / 1 shared
Blanco-Canosa, Santiago
1 / 2 shared
Gunn, Brandon
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Walker, Morgan
  • Boyle, Timothy J.
  • Lee, Jun-Sik
  • Basak, Rourav
  • Maple, M. Brian
  • Frano, Alex
  • Moir, Camilla M.
  • Sasmal, Kalyan
  • Lu, Yi
  • Ruiz, Alejandro
  • He, Yu
  • Blanco-Canosa, Santiago
  • Gunn, Brandon
OrganizationsLocationPeople

article

Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ

  • Neto, Eduardo H. Da Silva
  • Walker, Morgan
  • Boyle, Timothy J.
  • Lee, Jun-Sik
  • Basak, Rourav
  • Maple, M. Brian
  • Frano, Alex
  • Moir, Camilla M.
  • Sasmal, Kalyan
  • Lu, Yi
  • Ruiz, Alejandro
  • He, Yu
  • Blanco-Canosa, Santiago
  • Gunn, Brandon
Abstract

<jats:title>Abstract</jats:title><jats:p>The shape of 3<jats:italic>d</jats:italic>-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the <jats:inline-formula><jats:alternatives><jats:tex-math>{d}_{{x}^{2}-{y}^{2}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu <jats:italic>L</jats:italic><jats:sub>3</jats:sub> and Pr <jats:italic>M</jats:italic><jats:sub>5</jats:sub> resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7</jats:sub>, where the Pr <jats:italic>f</jats:italic>-electrons create a direct orbital bridge between CuO<jats:sub>2</jats:sub> planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.</jats:p>

Topics
  • phase
  • layered
  • two-dimensional
  • X-ray scattering
  • superconductivity
  • superconductivity