Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Squires, Alex

  • Google
  • 1
  • 7
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes71citations

Places of action

Chart of shared publication
Coles, Samuel W.
1 / 1 shared
Mccoll, Kit
1 / 3 shared
Morgan, Benjamin
1 / 6 shared
Bruce, Peter G.
1 / 24 shared
House, Robert A.
1 / 6 shared
Rees, Gregory J.
1 / 11 shared
Islam, Saiful
1 / 10 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Coles, Samuel W.
  • Mccoll, Kit
  • Morgan, Benjamin
  • Bruce, Peter G.
  • House, Robert A.
  • Rees, Gregory J.
  • Islam, Saiful
OrganizationsLocationPeople

article

Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes

  • Coles, Samuel W.
  • Mccoll, Kit
  • Morgan, Benjamin
  • Bruce, Peter G.
  • House, Robert A.
  • Rees, Gregory J.
  • Islam, Saiful
  • Squires, Alex
Abstract

Lithium-rich disordered rocksalt cathodes display high capacities arising from redox chemistry on both transition-metal and oxygen ions and are potential candidates for next-generation lithium-ion batteries. The atomic-scale mechanisms governing this O-redox behaviour, however, are not fully understood. In particular, it is not clear to what extent transition metal migration is required for O-redox and what role this may play in explaining voltage hysteresis in these materials. Here, we reveal an O-redox mechanism linking transition metal migration and O<sub>2</sub> formation in the disordered rocksalt Li<sub>2</sub>MnO<sub>2</sub>F. At high states of charge, O-ions dimerise to form molecular O<sub>2</sub> trapped in the bulk structure, leaving vacant O sites surrounding neighbouring Mn ions. This undercoordination drives Mn movement into new fully-coordinated octahedral sites. Mn displacement can occur irreversibly, which results in voltage hysteresis, with a lower voltage upon discharge as observed experimentally. Alternatively, Mn displacement may take place into interstitial octahedral sites, which permits a reversible return of the Mn ion to its original site upon discharge, recovering the original Li<sub>2</sub>MnO<sub>2</sub>F structure and resulting in reversible O-redox without voltage loss. These new findings suggest that reversible transition metal ion migration provides a possible design route to retain the high energy density of O-redox disordered rocksalt cathodes on cycling.

Topics
  • density
  • impedance spectroscopy
  • energy density
  • Oxygen
  • Lithium
  • interstitial