People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Squires, Alex
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes
Abstract
Lithium-rich disordered rocksalt cathodes display high capacities arising from redox chemistry on both transition-metal and oxygen ions and are potential candidates for next-generation lithium-ion batteries. The atomic-scale mechanisms governing this O-redox behaviour, however, are not fully understood. In particular, it is not clear to what extent transition metal migration is required for O-redox and what role this may play in explaining voltage hysteresis in these materials. Here, we reveal an O-redox mechanism linking transition metal migration and O<sub>2</sub> formation in the disordered rocksalt Li<sub>2</sub>MnO<sub>2</sub>F. At high states of charge, O-ions dimerise to form molecular O<sub>2</sub> trapped in the bulk structure, leaving vacant O sites surrounding neighbouring Mn ions. This undercoordination drives Mn movement into new fully-coordinated octahedral sites. Mn displacement can occur irreversibly, which results in voltage hysteresis, with a lower voltage upon discharge as observed experimentally. Alternatively, Mn displacement may take place into interstitial octahedral sites, which permits a reversible return of the Mn ion to its original site upon discharge, recovering the original Li<sub>2</sub>MnO<sub>2</sub>F structure and resulting in reversible O-redox without voltage loss. These new findings suggest that reversible transition metal ion migration provides a possible design route to retain the high energy density of O-redox disordered rocksalt cathodes on cycling.