Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luo, Sheng-Nian

  • Google
  • 1
  • 15
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Ultrafast visualization of incipient plasticity in dynamically compressed matter.15citations

Places of action

Chart of shared publication
Frost, Mungo
1 / 4 shared
Wang, Yongqiang
1 / 4 shared
Shen, Xiaozhe
1 / 6 shared
Ofori-Okai, Benjamin K.
1 / 1 shared
Chen, Zhijiang
1 / 3 shared
Mo, Mianzhen
1 / 3 shared
Glenzer, Siegfried
1 / 5 shared
Juncheng, E.
1 / 2 shared
Li, Renkai
1 / 3 shared
Kozina, Mike
1 / 1 shared
Reid, Alexander
1 / 1 shared
Baldwin, John Kevin
1 / 1 shared
Peterson, J. Ryan
1 / 1 shared
Descamps, Adrien
1 / 3 shared
Tang, Minxue
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Frost, Mungo
  • Wang, Yongqiang
  • Shen, Xiaozhe
  • Ofori-Okai, Benjamin K.
  • Chen, Zhijiang
  • Mo, Mianzhen
  • Glenzer, Siegfried
  • Juncheng, E.
  • Li, Renkai
  • Kozina, Mike
  • Reid, Alexander
  • Baldwin, John Kevin
  • Peterson, J. Ryan
  • Descamps, Adrien
  • Tang, Minxue
OrganizationsLocationPeople

article

Ultrafast visualization of incipient plasticity in dynamically compressed matter.

  • Frost, Mungo
  • Wang, Yongqiang
  • Shen, Xiaozhe
  • Luo, Sheng-Nian
  • Ofori-Okai, Benjamin K.
  • Chen, Zhijiang
  • Mo, Mianzhen
  • Glenzer, Siegfried
  • Juncheng, E.
  • Li, Renkai
  • Kozina, Mike
  • Reid, Alexander
  • Baldwin, John Kevin
  • Peterson, J. Ryan
  • Descamps, Adrien
  • Tang, Minxue
Abstract

Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • simulation
  • electron diffraction
  • aluminium
  • molecular dynamics
  • dislocation
  • plasticity