Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schrunk, Benjamin

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Visualizing band selective enhancement of quasiparticle lifetime in a metallic ferromagnet9citations

Places of action

Chart of shared publication
Kuthanazhi, Brinda
1 / 1 shared
Jo, Na Hyun
1 / 1 shared
Budko, Sergey L.
1 / 4 shared
Canfield, P. C.
1 / 5 shared
Orth, Peter P.
1 / 1 shared
Lee, Kyungchan
1 / 2 shared
Wu, Yun
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kuthanazhi, Brinda
  • Jo, Na Hyun
  • Budko, Sergey L.
  • Canfield, P. C.
  • Orth, Peter P.
  • Lee, Kyungchan
  • Wu, Yun
OrganizationsLocationPeople

article

Visualizing band selective enhancement of quasiparticle lifetime in a metallic ferromagnet

  • Kuthanazhi, Brinda
  • Schrunk, Benjamin
  • Jo, Na Hyun
  • Budko, Sergey L.
  • Canfield, P. C.
  • Orth, Peter P.
  • Lee, Kyungchan
  • Wu, Yun
Abstract

<jats:title>Abstract</jats:title><jats:p>Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub>, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • resistivity