Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kananian, Siavash

  • Google
  • 1
  • 15
  • 153

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021High-specific-power flexible transition metal dichalcogenide solar cells.153citations

Places of action

Chart of shared publication
Saraswat, Krishna C.
1 / 5 shared
Chen, Michelle E.
1 / 2 shared
Nitta, Frederick
1 / 2 shared
Vaziri, Sam
1 / 5 shared
Islam, Raisul
1 / 2 shared
Poon, Ada S.
1 / 1 shared
Park, Jin-Hong
1 / 2 shared
Kim, Kwan-Ho
1 / 1 shared
Pop, Eric
1 / 9 shared
Daus, Alwin
1 / 5 shared
Kumar, Aravindh
1 / 3 shared
Lee, Nayeun
1 / 2 shared
Hong, Jiho
1 / 2 shared
Brongersma, Mark L.
1 / 10 shared
Nassiri Nazif, Koosha
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Saraswat, Krishna C.
  • Chen, Michelle E.
  • Nitta, Frederick
  • Vaziri, Sam
  • Islam, Raisul
  • Poon, Ada S.
  • Park, Jin-Hong
  • Kim, Kwan-Ho
  • Pop, Eric
  • Daus, Alwin
  • Kumar, Aravindh
  • Lee, Nayeun
  • Hong, Jiho
  • Brongersma, Mark L.
  • Nassiri Nazif, Koosha
OrganizationsLocationPeople

article

High-specific-power flexible transition metal dichalcogenide solar cells.

  • Saraswat, Krishna C.
  • Chen, Michelle E.
  • Nitta, Frederick
  • Vaziri, Sam
  • Islam, Raisul
  • Poon, Ada S.
  • Kananian, Siavash
  • Park, Jin-Hong
  • Kim, Kwan-Ho
  • Pop, Eric
  • Daus, Alwin
  • Kumar, Aravindh
  • Lee, Nayeun
  • Hong, Jiho
  • Brongersma, Mark L.
  • Nassiri Nazif, Koosha
Abstract

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4Wg-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46Wg-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

Topics
  • surface
  • amorphous
  • copper
  • Silicon
  • power conversion efficiency
  • Gallium
  • Indium
  • Cadmium