Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gao, W. P.

  • Google
  • 1
  • 20
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021In-plane quasi-single-domain BaTiO<sub>3</sub> via interfacial symmetry engineering35citations

Places of action

Chart of shared publication
Eom, Chang-Beom
1 / 6 shared
Eom, K.
1 / 1 shared
Gopalan, V.
1 / 14 shared
Yuan, Y.
1 / 9 shared
Huyan, H. X.
1 / 1 shared
Lee, H.
1 / 16 shared
Kim, T. H.
1 / 7 shared
Paudel, T. R.
1 / 2 shared
Wang, B.
1 / 21 shared
Lindemann, S.
1 / 1 shared
Lei, Shiming
1 / 5 shared
Pan, X. Q.
1 / 10 shared
Tsymbal, E. Y.
1 / 5 shared
Lee, J. W.
1 / 2 shared
Lu, H.
1 / 15 shared
Gruverman, A.
1 / 15 shared
Tybell, T.
1 / 3 shared
Zorn, J. A.
1 / 1 shared
Ryu, S.
1 / 4 shared
Chen, L. Q.
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Eom, Chang-Beom
  • Eom, K.
  • Gopalan, V.
  • Yuan, Y.
  • Huyan, H. X.
  • Lee, H.
  • Kim, T. H.
  • Paudel, T. R.
  • Wang, B.
  • Lindemann, S.
  • Lei, Shiming
  • Pan, X. Q.
  • Tsymbal, E. Y.
  • Lee, J. W.
  • Lu, H.
  • Gruverman, A.
  • Tybell, T.
  • Zorn, J. A.
  • Ryu, S.
  • Chen, L. Q.
OrganizationsLocationPeople

article

In-plane quasi-single-domain BaTiO<sub>3</sub> via interfacial symmetry engineering

  • Eom, Chang-Beom
  • Eom, K.
  • Gopalan, V.
  • Yuan, Y.
  • Huyan, H. X.
  • Lee, H.
  • Kim, T. H.
  • Paudel, T. R.
  • Wang, B.
  • Lindemann, S.
  • Lei, Shiming
  • Pan, X. Q.
  • Tsymbal, E. Y.
  • Lee, J. W.
  • Lu, H.
  • Gruverman, A.
  • Tybell, T.
  • Zorn, J. A.
  • Ryu, S.
  • Chen, L. Q.
  • Gao, W. P.
Abstract

The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO<sub>3</sub> thin films. Theoretical calculations predict the key role of the BaTiO<sub>3</sub>/PrScO<sub>3</sub>(110) <sub>O</sub> substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.

Topics
  • impedance spectroscopy
  • thin film
  • anisotropic
  • transmission electron microscopy
  • interfacial