Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Müller, Marvin

  • Google
  • 1
  • 11
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019High-speed domain wall racetracks in a magnetic insulator151citations

Places of action

Chart of shared publication
Gutgsell, Cameron
1 / 1 shared
Nistor, Corneliu
1 / 2 shared
Welter, Pol
1 / 1 shared
Degen, Christian
1 / 1 shared
Gradauskaite, Elzbieta
1 / 7 shared
Gambardella, Pietro
1 / 14 shared
Trassin, Morgan
1 / 12 shared
Schaab, Jakob
1 / 3 shared
Fiebig, Manfred
1 / 13 shared
Velez, Saul
1 / 1 shared
Wörnle, Martin S.
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Gutgsell, Cameron
  • Nistor, Corneliu
  • Welter, Pol
  • Degen, Christian
  • Gradauskaite, Elzbieta
  • Gambardella, Pietro
  • Trassin, Morgan
  • Schaab, Jakob
  • Fiebig, Manfred
  • Velez, Saul
  • Wörnle, Martin S.
OrganizationsLocationPeople

article

High-speed domain wall racetracks in a magnetic insulator

  • Gutgsell, Cameron
  • Nistor, Corneliu
  • Welter, Pol
  • Degen, Christian
  • Gradauskaite, Elzbieta
  • Gambardella, Pietro
  • Trassin, Morgan
  • Schaab, Jakob
  • Fiebig, Manfred
  • Velez, Saul
  • Wörnle, Martin S.
  • Müller, Marvin
Abstract

<jats:title>Abstract</jats:title><jats:p>Recent reports of current-induced switching of ferrimagnetic oxides coupled to heavy metals have opened prospects for implementing magnetic insulators into electrically addressable devices. However, the configuration and dynamics of magnetic domain walls driven by electrical currents in insulating oxides remain unexplored. Here we investigate the internal structure of the domain walls in Tm<jats:sub>3</jats:sub>Fe<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub> (TmIG) and TmIG/Pt bilayers, and demonstrate their efficient manipulation by spin–orbit torques with velocities of up to 400 ms<jats:sup>−1</jats:sup> and minimal current threshold for domain wall flow of 5 × 10<jats:sup>6</jats:sup> A cm<jats:sup>−2</jats:sup>. Domain wall racetracks are defined by Pt current lines on continuous TmIG films, which allows for patterning the magnetic landscape of TmIG in a fast and reversible way. Scanning nitrogen-vacancy magnetometry reveals that the domain walls of TmIG thin films grown on Gd<jats:sub>3</jats:sub>Sc<jats:sub>2</jats:sub>Ga<jats:sub>3</jats:sub>O<jats:sub>12</jats:sub> exhibit left-handed Néel chirality, changing to an intermediate Néel–Bloch configuration upon Pt deposition. These results indicate the presence of interfacial Dzyaloshinskii–Moriya interaction in magnetic garnets, opening the possibility to stabilize chiral spin textures in centrosymmetric magnetic insulators.</jats:p>

Topics
  • Deposition
  • thin film
  • Nitrogen
  • mass spectrometry
  • texture
  • magnetic domain wall
  • vacancy