Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maruyama, Y.

  • Google
  • 1
  • 7
  • 250

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Ultra-long coherence times amongst room-temperature solid-state spins250citations

Places of action

Chart of shared publication
Hayashi, K.
1 / 8 shared
Yamasaki, S.
1 / 2 shared
Ohki, I.
1 / 1 shared
Mizuochi, N.
1 / 1 shared
Danjo, T.
1 / 1 shared
Herbschleb, E. D.
1 / 1 shared
Makino, T.
1 / 7 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Hayashi, K.
  • Yamasaki, S.
  • Ohki, I.
  • Mizuochi, N.
  • Danjo, T.
  • Herbschleb, E. D.
  • Makino, T.
OrganizationsLocationPeople

article

Ultra-long coherence times amongst room-temperature solid-state spins

  • Hayashi, K.
  • Yamasaki, S.
  • Ohki, I.
  • Mizuochi, N.
  • Danjo, T.
  • Maruyama, Y.
  • Herbschleb, E. D.
  • Makino, T.
Abstract

<jats:title>Abstract</jats:title><jats:p>Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero <jats:sup>12</jats:sup>C and <jats:sup>28</jats:sup>Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time (<jats:inline-formula><jats:alternatives><jats:tex-math>T_2^1.5</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msubsup><mml:mo>≈</mml:mo><mml:mn>1.5</mml:mn></mml:math></jats:alternatives></jats:inline-formula> ms) and Hahn-echo spin-coherence time (<jats:italic>T</jats:italic><jats:sub>2</jats:sub> ≈ 2.4 ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities. The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.</jats:p>

Topics
  • semiconductor
  • mass spectrometry
  • Silicon
  • Phosphorus