Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dusoe, Keith J.

  • Google
  • 2
  • 17
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Superelasticity and cryogenic linear shape memory effects of CaFe2As236citations
  • 2017Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites9citations

Places of action

Chart of shared publication
Canfield, Paul C.
1 / 3 shared
Giroux, Amanda M.
1 / 1 shared
Budko, Sergey L.
1 / 4 shared
Goldman, Alan
1 / 2 shared
Patel, Hetal
1 / 1 shared
Drachuck, Gil
1 / 1 shared
Yu, Hang
1 / 3 shared
Sypek, John T.
1 / 1 shared
Weinberger, Christopher R.
1 / 1 shared
Kreyssig, Andreas
1 / 2 shared
Aindow, Mark
1 / 9 shared
Vijayan, Sriram
1 / 9 shared
Bissell, Thomas R.
1 / 1 shared
Valencia, Leopolodo
1 / 1 shared
Morley, Jack E.
1 / 1 shared
Chen, Jie
1 / 12 shared
Dongare, Avinash M.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Canfield, Paul C.
  • Giroux, Amanda M.
  • Budko, Sergey L.
  • Goldman, Alan
  • Patel, Hetal
  • Drachuck, Gil
  • Yu, Hang
  • Sypek, John T.
  • Weinberger, Christopher R.
  • Kreyssig, Andreas
  • Aindow, Mark
  • Vijayan, Sriram
  • Bissell, Thomas R.
  • Valencia, Leopolodo
  • Morley, Jack E.
  • Chen, Jie
  • Dongare, Avinash M.
OrganizationsLocationPeople

article

Superelasticity and cryogenic linear shape memory effects of CaFe2As2

  • Canfield, Paul C.
  • Giroux, Amanda M.
  • Budko, Sergey L.
  • Goldman, Alan
  • Patel, Hetal
  • Drachuck, Gil
  • Yu, Hang
  • Dusoe, Keith J.
  • Sypek, John T.
  • Weinberger, Christopher R.
  • Kreyssig, Andreas
Abstract

<jats:title>Abstract</jats:title><jats:p>Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. However, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. Here, we report a unique shape memory behavior in CaFe<jats:sub>2</jats:sub>As<jats:sub>2</jats:sub>, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonal phase transformation. Our results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub>-structured intermetallic compounds.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • strength
  • yield strength
  • intermetallic