Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johansson, Ingegerd

  • Google
  • 1
  • 7
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Assessment and visualization of phenome-wide causal relationships using genetic data29citations

Places of action

Chart of shared publication
Renteria, Miguel E.
1 / 1 shared
Timpson, Nicholas
1 / 6 shared
Hwang, Daniel Liang-Dar
1 / 1 shared
Holgerson, Pernilla Lif
1 / 1 shared
Haworth, Simon
1 / 3 shared
Kho, Pik-Fang
1 / 1 shared
Cuellar-Partida, Gabriel
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Renteria, Miguel E.
  • Timpson, Nicholas
  • Hwang, Daniel Liang-Dar
  • Holgerson, Pernilla Lif
  • Haworth, Simon
  • Kho, Pik-Fang
  • Cuellar-Partida, Gabriel
OrganizationsLocationPeople

article

Assessment and visualization of phenome-wide causal relationships using genetic data

  • Johansson, Ingegerd
  • Renteria, Miguel E.
  • Timpson, Nicholas
  • Hwang, Daniel Liang-Dar
  • Holgerson, Pernilla Lif
  • Haworth, Simon
  • Kho, Pik-Fang
  • Cuellar-Partida, Gabriel
Abstract

Hypothesis-free Mendelian randomization studies provide a way to assess the causal relevance of a trait across the human phenome but can be limited by statistical power, sample overlap or complicated by horizontal pleiotropy. The recently described latent causal variable (LCV) approach provides an alternative method for causal inference which might be useful in hypothesis-free experiments across human phenome. We developed an automated pipeline for phenome-wide tests using the LCV approach including steps to estimate partial genetic causality, filter to a meaningful set of estimates, apply correction for multiple testing and then present the findings in a graphical summary termed causal architecture plot.We apply this pipeline to BMI and lipid traits as exemplars of traits where there is strong prior expectation for causal effects, and to dental caries and periodontitis as exemplars of traits where there is a need for causal inference. The results for lipids and BMI suggest that these traits are best viewed as contributing factors on a multitude of traits and conditions, thus providing additional evidence that supports viewing these traits as targets for interventions to improve health.On the other hand, caries and periodontitis are best viewed as a downstream consequence of other traits and diseases rather than a cause of ill health.The automated pipeline is implemented in the Complex-Traits Genetics Virtual Lab (https://vl.genoma.io) and results are available in (https://view.genoma.io). We propose causal architecture plots based on phenome-wide partial genetic causality estimates as a new way visualizing the overall causal map of the human phenome.

Topics
  • impedance spectroscopy
  • experiment