People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kato, Takashi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Hydrolyzable and biocompatible aliphatic polycarbonates with ether-functionalized side chains attached via amide linkers
Abstract
<jats:title>Abstract</jats:title><jats:p>Investigating polymer degradation mechanisms enables the establishment of controlled degradation techniques for the development of sustainable and recyclable materials. Hydration can play a crucial role in controlling the hydrolysis of polymers. Here, ether-functionalized aliphatic polycarbonates (APCs) susceptible to nonenzymatic hydrolysis were developed for application as biocompatible biomaterials. Among these polymers, those grafted with 2-methoxyethyl and 3-methoxypropyl side chains via an amide group were highly wettable, strongly interacted with water, and experienced almost complete hydrolysis in phosphate-buffered saline over 30 days, which was attributed to the hydrogen bonding between water and the amide/methoxy groups. In an alkaline medium, all amide-linked APCs were completely hydrolyzed within 30 days, regardless of the side-chain structure. In contrast, the nonamide-linked APCs and a representative aliphatic polycarbonate, poly(trimethylene carbonate), were minimally degraded in the buffer and experienced <31% degradation under alkaline conditions. The APC with the 3-methoxypropyl side chain exhibited platelet adhesion properties comparable to those of ether-functionalized APCs previously reported as blood-compatible polymers. Thus, our results demonstrate the effects of an amide linker on the hydration and hydrolytic properties of APCs and can help establish new design concepts for degradable polymers.</jats:p>