People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jones, Brad H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2016Scaling effects in sodium zirconium silicate phosphate (Na<sub>1+</sub><sub><i>x</i></sub>Zr<sub>2</sub>Si<sub><i>x</i></sub>P<sub>3-</sub><sub><i>x</i></sub>O<sub>12</sub>) ion-conducting thin filmscitations
- 2012Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templatescitations
- 2011Hierarchically porous silica prepared from ionic liquid and polymeric bicontinuous microemulsion templatescitations
- 2011Nanoporous polyethylene thin films templated by polymeric bicontinuous microemulsionscitations
- 2010Nanoporous materials derived from polymeric bicontinuous microemulsionscitations
Places of action
Organizations | Location | People |
---|
article
Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templates
Abstract
<p>Ternary blends of two homopolymers and a diblock copolymer can self-assemble into interpenetrating, three-dimensionally continuous networks with a characteristic length scale of ∼ 100 nm. In this review, we summarize our recent work demonstrating that these equilibrium fluid phases, known as polymeric bicontinuous microemulsions (BμE), can be designed as versatile precursors to nanoporous materials having pores with uniform sizes of ∼100 nm. As a model system, nanoporous polyethylene (PE) is derived from BμEs composed entirely of polyolefins. This monolithic material is then used as a template in the synthesis of other nanoporous materials for which structural control at the nm scale has traditionally been difficult to achieve. These materials, which include a high-temperature ceramic, polymeric thermosets and a conducting polymer, are produced by a simple nanocasting process, providing an inverse replica of the PE template. The PE is further used as a template for the production of hierarchically structured inorganic and polymeric materials by infiltration of mesostructured compounds into its pore network. The work described herein represents an unprecedented suite of nanoporous materials with well-defined pore structures prepared from a single PE template. They are anticipated to have potential application in diverse technological areas, including catalysis, separations and electronic devices.</p>