People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorbachev, Roman V.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Atomic Resolution Imaging of CrBr 3 using Adhesion-Enhanced Gridscitations
- 2020Atomic Resolution Imaging of CrBr3 using Adhesion-Enhanced Gridscitations
- 2019Formation and healing of defects in atomically thin GaSe and InSecitations
- 2019Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopycitations
- 2018Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructurescitations
- 2018Unusual Suppression of the Superconducting Energy Gap and Critical Temperature in Atomically Thin NbSe2citations
- 2018Nanometer Resolution Elemental Mapping in Graphene-based TEM Liquid Cellscitations
- 2018Anomalous twin boundaries in two dimensional materialscitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
Places of action
Organizations | Location | People |
---|
article
High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
Abstract
A decade of intense research on two‐dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes3,4. Here we report a high‐quality 2D electron gas in few‐layer<br/>InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 and 104 cm2/Vs at room and liquid‐helium temperatures, respectively, allowing the observation of the fully‐developed quantum Hall effect. The conduction electrons occupy a single 2D sub‐band and have a small effective mass. Photoluminescence spectroscopy reveals that the<br/>bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band‐edge optical response vanishes in monolayer InSe, which is attributed to monolayer’s mirrorplane symmetry. Encapsulated 2D InSe expands the family of graphene‐like semiconductors and, in terms of quality, is competitive with atomically‐thin dichalcogenides5,6,7 and black phosphorus