People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nygård, Jesper
University of Copenhagen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Superconductivity and Parity Preservation in As-Grown in Islands on InAs Nanowirescitations
- 2021Superconductivity and Parity Preservation in As-Grown In Islands on InAs Nanowirescitations
- 2017Micro-Raman spectroscopy for the detection of stacking fault density in InAs and GaAs nanowirescitations
- 2016Construction of insulin 18-mer nanoassemblies driven by coordination to Iron(II) and Zinc(II) ions at distinct sitescitations
- 2016Majorana bound states in a coupled quantum-dot hybrid-nanowire systemcitations
- 2015Hard gap in epitaxial semiconductor-superconductor nanowirescitations
- 2013Low temperature transport in p-doped InAs nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Hard gap in epitaxial semiconductor-superconductor nanowires
Abstract
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.