Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nygård, Jesper

  • Google
  • 7
  • 37
  • 1405

University of Copenhagen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Superconductivity and Parity Preservation in As-Grown in Islands on InAs Nanowires12citations
  • 2021Superconductivity and Parity Preservation in As-Grown In Islands on InAs Nanowires12citations
  • 2017Micro-Raman spectroscopy for the detection of stacking fault density in InAs and GaAs nanowires8citations
  • 2016Construction of insulin 18-mer nanoassemblies driven by coordination to Iron(II) and Zinc(II) ions at distinct sites12citations
  • 2016Majorana bound states in a coupled quantum-dot hybrid-nanowire system972citations
  • 2015Hard gap in epitaxial semiconductor-superconductor nanowires383citations
  • 2013Low temperature transport in p-doped InAs nanowires6citations

Places of action

Chart of shared publication
Johnson, Erik
2 / 14 shared
Carrad, Damon J.
1 / 2 shared
Jespersen, Thomas Sand
5 / 11 shared
Fiordaliso, Elisabetta M.
2 / 3 shared
Bjergfelt, Martin Saurbrey
1 / 1 shared
Kanne, Thomas
1 / 3 shared
Carrad, Damon James
1 / 5 shared
Nordqvist, Thomas Kanne
1 / 1 shared
Bjergfelt, Martin
1 / 3 shared
Vosch, Tom
1 / 9 shared
Dick, Kimberly A.
1 / 19 shared
Bolinsson, Jessica
1 / 12 shared
Carro-Temboury, Miguel R.
1 / 1 shared
Lindberg, Caroline
1 / 1 shared
Lehmann, Sebastian
1 / 28 shared
Tanta, Rawa
1 / 2 shared
Munch, Henrik Kofoed
1 / 1 shared
Arleth, Lise
1 / 15 shared
Christensen, Niels Johan
1 / 3 shared
Zhang, Jingdong
1 / 8 shared
Jensen, Knud
1 / 4 shared
Engelbrekt, Christian
1 / 8 shared
Thulstrup, Peter Waaben
1 / 5 shared
Porsgaard, Trine
1 / 1 shared
Østergaard, Mads
1 / 1 shared
Hoeg-Jensen, Thomas
1 / 1 shared
Vaitiekėnas, Saulius
1 / 3 shared
Leijnse, M.
1 / 5 shared
Flensberg, Karsten
1 / 4 shared
Danon, Jeroen
1 / 4 shared
Hansen, Esben Bork
1 / 1 shared
Krogstrup, Peter
3 / 17 shared
Kuemmeth, Ferdinand
1 / 2 shared
Chang, W.
1 / 3 shared
Albrecht, S. M.
1 / 2 shared
Upadhyay, Shivendra
1 / 1 shared
Madsen, Morten Hannibal
1 / 2 shared
Chart of publication period
2021
2017
2016
2015
2013

Co-Authors (by relevance)

  • Johnson, Erik
  • Carrad, Damon J.
  • Jespersen, Thomas Sand
  • Fiordaliso, Elisabetta M.
  • Bjergfelt, Martin Saurbrey
  • Kanne, Thomas
  • Carrad, Damon James
  • Nordqvist, Thomas Kanne
  • Bjergfelt, Martin
  • Vosch, Tom
  • Dick, Kimberly A.
  • Bolinsson, Jessica
  • Carro-Temboury, Miguel R.
  • Lindberg, Caroline
  • Lehmann, Sebastian
  • Tanta, Rawa
  • Munch, Henrik Kofoed
  • Arleth, Lise
  • Christensen, Niels Johan
  • Zhang, Jingdong
  • Jensen, Knud
  • Engelbrekt, Christian
  • Thulstrup, Peter Waaben
  • Porsgaard, Trine
  • Østergaard, Mads
  • Hoeg-Jensen, Thomas
  • Vaitiekėnas, Saulius
  • Leijnse, M.
  • Flensberg, Karsten
  • Danon, Jeroen
  • Hansen, Esben Bork
  • Krogstrup, Peter
  • Kuemmeth, Ferdinand
  • Chang, W.
  • Albrecht, S. M.
  • Upadhyay, Shivendra
  • Madsen, Morten Hannibal
OrganizationsLocationPeople

article

Hard gap in epitaxial semiconductor-superconductor nanowires

  • Kuemmeth, Ferdinand
  • Chang, W.
  • Jespersen, Thomas Sand
  • Albrecht, S. M.
  • Nygård, Jesper
  • Krogstrup, Peter
Abstract

Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand. However, previous instances of proximitized semiconductors show significant tunneling conductance below the superconducting gap, suggesting a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.

Topics
  • density
  • impedance spectroscopy
  • semiconductor
  • superconductivity
  • superconductivity