Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wa, Tao

  • Google
  • 1
  • 8
  • 282

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry.282citations

Places of action

Chart of shared publication
Xj, Li
1 / 2 shared
Jd, Watts
1 / 1 shared
Hood, L.
1 / 1 shared
Obrien, R.
1 / 3 shared
Wollscheid, Bernd
1 / 2 shared
Eng, Jimmy
1 / 1 shared
Bodenmiller, Bernd
1 / 4 shared
Aebersold, R.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Xj, Li
  • Jd, Watts
  • Hood, L.
  • Obrien, R.
  • Wollscheid, Bernd
  • Eng, Jimmy
  • Bodenmiller, Bernd
  • Aebersold, R.
OrganizationsLocationPeople

article

Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry.

  • Xj, Li
  • Jd, Watts
  • Hood, L.
  • Obrien, R.
  • Wa, Tao
  • Wollscheid, Bernd
  • Eng, Jimmy
  • Bodenmiller, Bernd
  • Aebersold, R.
Abstract

We present a robust and general method for the identification and relative quantification of phosphorylation sites in complex protein mixtures. It is based on a new chemical derivatization strategy using a dendrimer as a soluble polymer support and tandem mass spectrometry (MS/MS). In a single step, phosphorylated peptides are covalently conjugated to a dendrimer in a reaction catalyzed by carbodiimide and imidazole. Modified phosphopeptides are released from the dendrimer via acid hydrolysis and analyzed by MS/MS. When coupled with an initial antiphosphotyrosine protein immunoprecipitation step and stable-isotope labeling, in a single experiment, we identified all known tyrosine phosphorylation sites within the immunoreceptor tyrosine-based activation motifs (ITAM) of the T-cell receptor (TCR) CD3 chains, and previously unknown phosphorylation sites on total 97 tyrosine phosphoproteins and their interacting partners in human T cells. The dynamic changes in phosphorylation were quantified in these proteins.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • activation
  • spectrometry
  • dendrimer
  • tandem mass spectrometry