People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manchon, Aurelien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Unified formulation of interfacial magnonic pumping from noncollinear magnetscitations
- 2018Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
- 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) filmscitations
- 2017Spin-Orbitronics at Transition Metal Interfacescitations
- 2016k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metalscitations
- 2016Spin-torque generation in topological insulator based heterostructurescitations
- 2015Antiferromagnetic spin-orbitronics
- 2015Chiral damping of magnetic domain wallscitations
- 2014Spin-transfer torque generated by a topological insulatorcitations
- 2014Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimescitations
Places of action
Organizations | Location | People |
---|
article
Chiral damping of magnetic domain walls
Abstract
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).