People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Asadi, Kamal
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Solution-processed multiferroic thin-films with large magnetoelectric coupling at room-temperaturecitations
- 2021Beyond 17% stable perovskite solar module via polaron arrangement of tuned polymeric hole transport layercitations
- 2021Mechanically stable solution-processed transparent conductive electrodes for optoelectronic applicationscitations
- 2021Mechanically stable solution-processed transparent conductive electrodes for optoelectronic applicationscitations
- 2020Synthesis and Solution Processing of Nylon-5 Ferroelectric Thin Filmscitations
- 2020Synthesis and solution processing of nylon-5 ferroelectric thin films : the renaissance of odd-nylons?
- 2019Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogeneratorscitations
- 2019Solution-processed transparent ferroelectric nylon thin filmscitations
- 2019Elastic wave propagation in smooth and wrinkled stratified polymer filmscitations
- 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)citations
- 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)citations
- 2016The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)citations
- 2016Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storagecitations
- 2015Microstructured organic ferroelectric thin film capacitors by solution micromoldingcitations
- 2012Processing and Low Voltage Switching of Organic Ferroelectric Phase-Separated Bistable Diodescitations
- 2012Ferroelectric Phase Diagram of PVDF:PMMAcitations
- 2011Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymerscitations
- 2010Retention Time and Depolarization in Organic Nonvolatile Memories Based on Ferroelectric Semiconductor Phase-Separated Blendscitations
Places of action
Organizations | Location | People |
---|
article
The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)
Abstract
Piezoelectricity describes interconversion between electrical charge and mechanical strain. As expected for lattice ions displaced in an electric field, the proportionality constant is positive for all piezoelectric materials. The exceptions are poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (P(VDF-TrFE)), which exhibit a negative longitudinal piezoelectric coefficient. Reported explanations exclusively consider contraction with applied electric field of either the crystalline or the amorphous part of these semi-crystalline polymers. To distinguish between these conflicting interpretations, we have performed in situ dynamic X-ray diffraction measurements on P(VDF-TrFE) capacitors. We find that the piezoelectric effect is dominated by the change in lattice constant but, surprisingly, it cannot be accounted for by the polarization-biased electrostrictive contribution of the crystalline part alone. Our quantitative analysis shows that an additional contribution is operative, which we argue is due to an electromechanical coupling between the intermixed crystalline lamellae and amorphous regions. Our findings tie the counterintuitive negative piezoelectric response of PVDF and its copolymers to the dynamics of their composite microstructure.