Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hardin, William G.

  • Google
  • 2
  • 9
  • 742

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-d perovskite composite electrodes33citations
  • 2014Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes709citations

Places of action

Chart of shared publication
Forslund, Robin P.
1 / 2 shared
Mefford, J. Tyler
2 / 6 shared
Saunders, Jennette
1 / 2 shared
Abakumov, Artem M.
1 / 11 shared
Stevenson, Keith J.
2 / 8 shared
Bonnefont, Antoine
1 / 8 shared
Dai, Sheng
2 / 6 shared
Kurilovich, Aleksandr A.
1 / 2 shared
Johnston, Keith P.
2 / 5 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • Forslund, Robin P.
  • Mefford, J. Tyler
  • Saunders, Jennette
  • Abakumov, Artem M.
  • Stevenson, Keith J.
  • Bonnefont, Antoine
  • Dai, Sheng
  • Kurilovich, Aleksandr A.
  • Johnston, Keith P.
OrganizationsLocationPeople

article

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes

  • Mefford, J. Tyler
  • Hardin, William G.
  • Stevenson, Keith J.
  • Dai, Sheng
  • Johnston, Keith P.
Abstract

Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.

Topics
  • perovskite
  • impedance spectroscopy
  • mobility
  • Oxygen
  • Lanthanum
  • vacancy