Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fobes, D.

  • Google
  • 1
  • 18
  • 262

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1-xSex262citations

Places of action

Chart of shared publication
Matas, S.
1 / 1 shared
Pham, H.
1 / 3 shared
Mao, Z. Q.
1 / 1 shared
Prokeš, K.
1 / 4 shared
Spinu, L.
1 / 2 shared
Broholm, C.
1 / 2 shared
Liu, T. J.
1 / 1 shared
Argyriou, D. N.
1 / 9 shared
Thampy, V.
1 / 1 shared
Qian, B.
1 / 2 shared
Qiu, Y.
1 / 9 shared
Kimber, S. A. J.
1 / 3 shared
Rotaru, A.
1 / 3 shared
Hu, J.
1 / 32 shared
Rodriguez, J. A.
1 / 2 shared
Savici, A. T.
1 / 1 shared
Reehuis, M.
1 / 2 shared
Hiess, A.
1 / 3 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Matas, S.
  • Pham, H.
  • Mao, Z. Q.
  • Prokeš, K.
  • Spinu, L.
  • Broholm, C.
  • Liu, T. J.
  • Argyriou, D. N.
  • Thampy, V.
  • Qian, B.
  • Qiu, Y.
  • Kimber, S. A. J.
  • Rotaru, A.
  • Hu, J.
  • Rodriguez, J. A.
  • Savici, A. T.
  • Reehuis, M.
  • Hiess, A.
OrganizationsLocationPeople

article

From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe1.02Te1-xSex

  • Matas, S.
  • Pham, H.
  • Mao, Z. Q.
  • Prokeš, K.
  • Spinu, L.
  • Broholm, C.
  • Liu, T. J.
  • Argyriou, D. N.
  • Thampy, V.
  • Qian, B.
  • Fobes, D.
  • Qiu, Y.
  • Kimber, S. A. J.
  • Rotaru, A.
  • Hu, J.
  • Rodriguez, J. A.
  • Savici, A. T.
  • Reehuis, M.
  • Hiess, A.
Abstract

The iron chalcogenide Fe<sub>1+y </sub>(Te<sub>1-<i>x</i></sub>Se<i><sub>x </sub></i>) is structurally the simplest of the Fe-based superconductors<sup>1–3</sup>. Although the Fermi surface is similar to iron pnictides<sup>4,5</sup>, the parent compound Fe<sub>1+y</sub>Te exhibits antiferromagnetic order with an in-plane magnetic wave vector (π,0) (ref. 6). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave vector (π,π) that connects hole and electron parts of the Fermi surface<sup>7,8</sup>. Despite these differences, both the pnictide and chalcogenide Fe superconductors exhibit a superconducting spin resonance around (π,π) (refs 9-11). A central question in this burgeoning field is therefore how (π,π) superconductivity can emerge from a (π,0) magnetic instability<sup>12</sup>. Here, we report that the magnetic soft mode evolving from the (π,0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs as magnetic correlations at (π,0) are suppressed and the mode at (π, π) becomes dominant for <i>x</i>&gt;0.29. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors. 

Topics
  • impedance spectroscopy
  • surface
  • compound
  • iron
  • superconductivity
  • superconductivity