People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Newton, Marcus
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2017Deformation of a bismuth ferrite nanocrystal imaged by coherent X-ray diffraction
- 2009Coherent X-ray diffraction imaging of strain at the nanoscalecitations
- 2008Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistorscitations
- 2006Synthesis and characterisation of zinc oxide tetrapod nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Coherent X-ray diffraction imaging of strain at the nanoscale
Abstract
The understanding and management of strain is of fundamental importance in the design and implementation of materials. The strain properties of nanocrystalline materials are different from those of the bulk because of the strong influence of their surfaces and interfaces, which can be used to augment their function and introduce desirable characteristics. Here we explain how new X-ray diffraction techniques, which take advantage of the latest synchrotron radiation sources, can be used to obtain quantitative three-dimensional images of strain. These methods will lead, in the near future, to new knowledge of how nanomaterials behave within active devices and on unprecedented timescales.