People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kendrick, Emma
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Impact of Short Chain Polymer in Ionic Conductivity for Polymer Solid-State Electrolyte Towards Inter-/Intramolecular O-H Bond
- 2023Methodology in quality control for electrode processingcitations
- 2023Rapid sintering of Li6.5La3Zr1Nb0.5Ce0.25Ti0.25O12 for high density lithium garnet electrolytes with current induced in-situ interfacial resistance reduction.citations
- 2022Roadmap on Li-ion battery manufacturing researchcitations
- 2022Roadmap on Li-ion battery manufacturing research
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouch.citations
- 2022Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing processcitations
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouchcitations
- 2022Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodescitations
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021On the solubility and stability of polyvinylidene fluoridecitations
- 2021Microstructural design of printed graphite electrodes for lithium-ion batteriescitations
- 2021Evaluation of Ga0.2Li6.4Nd3Zr2O12 garnetscitations
- 2020Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imagingcitations
- 2010Crystal chemistry and optimization of conductivity in 2A, 2M and 2H alkaline earth lanthanum germanate oxyapatite electrolyte polymorphscitations
- 2007Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La9.33Si6O26citations
- 2007Structural studies of the proton conducting perovskite 'La0.6Ba0.4ScO2.8'citations
- 2007Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moietiescitations
- 2006Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductorscitations
Places of action
Organizations | Location | People |
---|
article
Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties
Abstract
The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell(1,2). A crucial requirement for such devices is a good ionic (O2- or H+) conductor as the electrolyte(3,4). Traditionally, fluorite- and perovskite-type oxides have been targeted(3-6), although there is growing interest in alternative structure types for intermediate-temperature (400-700 degrees C) solid-oxide fuel cells. In particular, structures containing tetrahedral moieties, such as La1-xCaxMO4-x/2(M= Ta, Nb, P) (refs 7,8), La1-xBa1+xGaO4-x/2 (refs 9,10) and La9.33+xSi6O26+3x/2 (ref. 11), have been attracting considerable attention recently. However, an atomic-scale understanding of the conduction mechanisms in these systems is still lacking; such mechanistic detail is important for developing strategies for optimizing the conductivity, as well as identifying next-generation materials. In this context, we report a combined experimental and computational modelling study of the La1-xBa1+xGaO4-x/2 system, which exhibits both proton and oxide-ion conduction(9,10). Here we show that oxide-ion conduction proceeds via a cooperative 'cog-wheel'-type process involving the breaking and re-forming of Ga2O7 units, whereas the rate-limiting step for proton conduction is intra-tetrahedron proton transfer. Both mechanisms are unusual for ceramic oxide materials, and similar cooperative processes may be important in related systems containing tetrahedral moieties.