Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Henley, Richard W.

  • Google
  • 1
  • 5
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption91citations

Places of action

Chart of shared publication
Clark, David A.
1 / 1 shared
Wykes, Jeremy L.
1 / 1 shared
King, Penelope
1 / 11 shared
Renggli, Christian J.
1 / 2 shared
Brink, Frank J.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Clark, David A.
  • Wykes, Jeremy L.
  • King, Penelope
  • Renggli, Christian J.
  • Brink, Frank J.
OrganizationsLocationPeople

article

Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption

  • Clark, David A.
  • Wykes, Jeremy L.
  • King, Penelope
  • Renggli, Christian J.
  • Brink, Frank J.
  • Henley, Richard W.
Abstract

<p>Porphyry copper deposits - the primary source of the world's copper - are a consequence of the degassing of intrusion complexes in magmatic arcs associated with ancient subduction zones. They are characterized by copper and iron sulphides, commonly found with anhydrite (CaSO 4), over scales of several kilometres through intensely altered and fractured rocks. The magmatic source of the metals is broadly understood, but the processes that transport and deposit the metals at the megaton scale are unclear. The hydrogen sulphide necessary for metal deposition is commonly assumed to form by a reaction between sulphur dioxide and water, but this reaction is inefficient and cannot explain the formation of economic-grade deposits. Here we use high-temperature laboratory experiments to show that a very rapid chemisorption reaction occurs between sulphur dioxide gas, a principal component of magmatic gas mixtures, and calcic feldspar, an abundant mineral in the arc crust. The chemisorption reaction generates the mineral anhydrite and hydrogen sulphide gas, and triggers deposition of metal sulphides. We use thermodynamic calculations to show that as magmatic gas cools and expands the concentration of hydrogen sulphide gas increases exponentially to drive efficient deposition of metal sulphides and consequent formation of economic-grade porphyry copper deposits.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • mineral
  • experiment
  • Hydrogen
  • copper
  • iron
  • degassing
  • Sulphur