Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

King, Penelope

  • Google
  • 11
  • 32
  • 562

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2019 An experimental study of SO 2 reactions with silicate glasses and supercooled melts in the system anorthite–diopside–albite at high temperature 11citations
  • 2018SO2 gas reactions with silicate glasses33citations
  • 2015Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption91citations
  • 2013Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts23citations
  • 2013A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glasses22citations
  • 2013Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania)59citations
  • 2011Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals21citations
  • 2009Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectra36citations
  • 2007Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS108citations
  • 2006A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopy73citations
  • 2002CO2 solubility and speciation in intermediate (andesitic) melts85citations

Places of action

Chart of shared publication
Guagliardo, P.
1 / 2 shared
Henley, R. W.
1 / 2 shared
Middleton, J. P.
1 / 2 shared
Mcmorrow, L.
1 / 1 shared
Renggli, C. J.
1 / 1 shared
Turner, M.
1 / 4 shared
Renggli, Christian J.
2 / 2 shared
Clark, David A.
1 / 1 shared
Wykes, Jeremy L.
1 / 1 shared
Brink, Frank J.
1 / 1 shared
Henley, Richard W.
1 / 1 shared
Ramsey, Michael S.
1 / 1 shared
Lee, Rachel J.
1 / 1 shared
Larsen, Jessica F.
1 / 1 shared
Ramirez, Carlos
1 / 1 shared
Mangasini, Frederick
1 / 1 shared
Barry, Peter H.
1 / 1 shared
Fischer, Tobias P.
1 / 1 shared
Moor, J. Maarten De
1 / 1 shared
Botcharnikov, Roman E.
1 / 4 shared
Hilton, David R.
1 / 1 shared
Hervig, Richard L.
1 / 1 shared
Hyde, Brendt C.
1 / 1 shared
Spilde, Michael N.
1 / 1 shared
Ali, Abdul Mehdi S.
1 / 1 shared
Dyar, M. Darby
2 / 5 shared
Dufresne, Céleste D. M.
1 / 1 shared
Dalby, Klm N.
1 / 1 shared
Zakaznova-Herzog, Valentina P.
1 / 2 shared
Nesbitt, H. Wayne
1 / 4 shared
Dalby, Kim N.
2 / 8 shared
Holloway, J. R.
1 / 1 shared
Chart of publication period
2019
2018
2015
2013
2011
2009
2007
2006
2002

Co-Authors (by relevance)

  • Guagliardo, P.
  • Henley, R. W.
  • Middleton, J. P.
  • Mcmorrow, L.
  • Renggli, C. J.
  • Turner, M.
  • Renggli, Christian J.
  • Clark, David A.
  • Wykes, Jeremy L.
  • Brink, Frank J.
  • Henley, Richard W.
  • Ramsey, Michael S.
  • Lee, Rachel J.
  • Larsen, Jessica F.
  • Ramirez, Carlos
  • Mangasini, Frederick
  • Barry, Peter H.
  • Fischer, Tobias P.
  • Moor, J. Maarten De
  • Botcharnikov, Roman E.
  • Hilton, David R.
  • Hervig, Richard L.
  • Hyde, Brendt C.
  • Spilde, Michael N.
  • Ali, Abdul Mehdi S.
  • Dyar, M. Darby
  • Dufresne, Céleste D. M.
  • Dalby, Klm N.
  • Zakaznova-Herzog, Valentina P.
  • Nesbitt, H. Wayne
  • Dalby, Kim N.
  • Holloway, J. R.
OrganizationsLocationPeople

article

Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption

  • Clark, David A.
  • Wykes, Jeremy L.
  • King, Penelope
  • Renggli, Christian J.
  • Brink, Frank J.
  • Henley, Richard W.
Abstract

<p>Porphyry copper deposits - the primary source of the world's copper - are a consequence of the degassing of intrusion complexes in magmatic arcs associated with ancient subduction zones. They are characterized by copper and iron sulphides, commonly found with anhydrite (CaSO 4), over scales of several kilometres through intensely altered and fractured rocks. The magmatic source of the metals is broadly understood, but the processes that transport and deposit the metals at the megaton scale are unclear. The hydrogen sulphide necessary for metal deposition is commonly assumed to form by a reaction between sulphur dioxide and water, but this reaction is inefficient and cannot explain the formation of economic-grade deposits. Here we use high-temperature laboratory experiments to show that a very rapid chemisorption reaction occurs between sulphur dioxide gas, a principal component of magmatic gas mixtures, and calcic feldspar, an abundant mineral in the arc crust. The chemisorption reaction generates the mineral anhydrite and hydrogen sulphide gas, and triggers deposition of metal sulphides. We use thermodynamic calculations to show that as magmatic gas cools and expands the concentration of hydrogen sulphide gas increases exponentially to drive efficient deposition of metal sulphides and consequent formation of economic-grade porphyry copper deposits.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • mineral
  • experiment
  • Hydrogen
  • copper
  • iron
  • degassing
  • Sulphur