People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
King, Penelope
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019 An experimental study of SO 2 reactions with silicate glasses and supercooled melts in the system anorthite–diopside–albite at high temperature citations
- 2018SO2 gas reactions with silicate glassescitations
- 2015Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorptioncitations
- 2013Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate meltscitations
- 2013A micro-reflectance IR spectroscopy method for analyzing volatile species in basaltic, andesitic, phonolitic, and rhyolitic glassescitations
- 2013Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania)citations
- 2011Methods to analyze metastable and microparticulate hydrated and hydrous iron sulfate mineralscitations
- 2009Effect of SiO2, total FeO, Fe3+/Fe2+ and alkali elements in basaltic glasses on mid-infrared spectracitations
- 2007Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPScitations
- 2006A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopycitations
- 2002CO2 solubility and speciation in intermediate (andesitic) meltscitations
Places of action
Organizations | Location | People |
---|
article
Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption
Abstract
<p>Porphyry copper deposits - the primary source of the world's copper - are a consequence of the degassing of intrusion complexes in magmatic arcs associated with ancient subduction zones. They are characterized by copper and iron sulphides, commonly found with anhydrite (CaSO 4), over scales of several kilometres through intensely altered and fractured rocks. The magmatic source of the metals is broadly understood, but the processes that transport and deposit the metals at the megaton scale are unclear. The hydrogen sulphide necessary for metal deposition is commonly assumed to form by a reaction between sulphur dioxide and water, but this reaction is inefficient and cannot explain the formation of economic-grade deposits. Here we use high-temperature laboratory experiments to show that a very rapid chemisorption reaction occurs between sulphur dioxide gas, a principal component of magmatic gas mixtures, and calcic feldspar, an abundant mineral in the arc crust. The chemisorption reaction generates the mineral anhydrite and hydrogen sulphide gas, and triggers deposition of metal sulphides. We use thermodynamic calculations to show that as magmatic gas cools and expands the concentration of hydrogen sulphide gas increases exponentially to drive efficient deposition of metal sulphides and consequent formation of economic-grade porphyry copper deposits.</p>