People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peng, Wei
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2019Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystalscitations
- 2018Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystalscitations
- 2017Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystalscitations
- 2016Surface Restructuring of Hybrid Perovskite Crystalscitations
- 2016Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Propertiescitations
- 2015Planar-integrated single-crystalline perovskite photodetectorscitations
- 2015High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallizationcitations
- 2014Direct functionalization of nanodiamonds with maleimidecitations
- 2009Magnetization reversal in bulk and thin films of the ferrimagnetic ErCo0.50Mn0.50O3 perovskite
Places of action
Organizations | Location | People |
---|
article
Planar-integrated single-crystalline perovskite photodetectors
Abstract
Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.