Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kirmani, Ahmad

  • Google
  • 7
  • 37
  • 1781

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2017Programmable and coherent crystallization of semiconductors.38citations
  • 2017Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption25citations
  • 2017Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaicscitations
  • 2016Surface Restructuring of Hybrid Perovskite Crystals148citations
  • 2016Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics42citations
  • 2016Ligand-Stabilized Reduced-Dimensionality Perovskites1288citations
  • 2015Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals240citations

Places of action

Chart of shared publication
Balawi, Ahmed H.
1 / 5 shared
Amassian, Aram
1 / 15 shared
Munir, Rahim
1 / 13 shared
Li, Ruipeng
2 / 14 shared
Sargent, Edward H.
2 / 21 shared
Gao, Yangqin
1 / 1 shared
Palmiano, Elenita
1 / 1 shared
Liang, Ru-Ze
1 / 1 shared
Hoogland, Sjoerd
2 / 9 shared
Sheikh, Arif Dastgir
1 / 5 shared
Banavoth, Murali
2 / 14 shared
Beaujuge, Pierre
1 / 6 shared
Firdaus, Yuliar
1 / 8 shared
Yuan, Mingjian
2 / 4 shared
Peng, Wei
1 / 9 shared
Ooi, Boon Siew
1 / 8 shared
Yengel, Emre
1 / 6 shared
Cho, Nam Chul
1 / 3 shared
Dey, Sukumar
1 / 3 shared
Abdelhady, Ahmed L.
1 / 8 shared
Alarousu, Erkki
1 / 14 shared
Sun, Jingya
1 / 2 shared
Parida, Manas R.
1 / 5 shared
Sarmah, Smritakshi Phukan
1 / 1 shared
Zhumekenov, Ayan A.
1 / 4 shared
Voznyy, Oleksandr
1 / 9 shared
Quan, Li Na
1 / 3 shared
Comin, Riccardo
1 / 10 shared
Kim, Dong Ha
1 / 2 shared
Buin, Andrei
1 / 1 shared
Beauregard, Eric M.
1 / 1 shared
Anthony, John E.
1 / 12 shared
Smilgies, Detlef-M.
1 / 3 shared
Wang, Qingxiao
1 / 2 shared
Pan, Wenyang
1 / 3 shared
Payne, Marcia M.
1 / 1 shared
Giannelis, Emmanuel P.
1 / 9 shared
Chart of publication period
2017
2016
2015

Co-Authors (by relevance)

  • Balawi, Ahmed H.
  • Amassian, Aram
  • Munir, Rahim
  • Li, Ruipeng
  • Sargent, Edward H.
  • Gao, Yangqin
  • Palmiano, Elenita
  • Liang, Ru-Ze
  • Hoogland, Sjoerd
  • Sheikh, Arif Dastgir
  • Banavoth, Murali
  • Beaujuge, Pierre
  • Firdaus, Yuliar
  • Yuan, Mingjian
  • Peng, Wei
  • Ooi, Boon Siew
  • Yengel, Emre
  • Cho, Nam Chul
  • Dey, Sukumar
  • Abdelhady, Ahmed L.
  • Alarousu, Erkki
  • Sun, Jingya
  • Parida, Manas R.
  • Sarmah, Smritakshi Phukan
  • Zhumekenov, Ayan A.
  • Voznyy, Oleksandr
  • Quan, Li Na
  • Comin, Riccardo
  • Kim, Dong Ha
  • Buin, Andrei
  • Beauregard, Eric M.
  • Anthony, John E.
  • Smilgies, Detlef-M.
  • Wang, Qingxiao
  • Pan, Wenyang
  • Payne, Marcia M.
  • Giannelis, Emmanuel P.
OrganizationsLocationPeople

article

Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

  • Anthony, John E.
  • Kirmani, Ahmad
  • Smilgies, Detlef-M.
  • Wang, Qingxiao
  • Pan, Wenyang
  • Payne, Marcia M.
  • Li, Ruipeng
  • Giannelis, Emmanuel P.
Abstract

Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

Topics
  • polymer
  • single crystal
  • amorphous
  • phase
  • mobility
  • semiconductor
  • crystallization