Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dolocan, Andrei

  • Google
  • 5
  • 42
  • 295

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphase31citations
  • 2017ultrathin wafer scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism33citations
  • 2016The eyes of Tullimonstrum reveal a vertebrate affinity55citations
  • 2015Revealing the planar chemistry of two-dimensional heterostructures at the atomic level72citations
  • 2015Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils104citations

Places of action

Chart of shared publication
Mitlin, David
1 / 6 shared
Hao, Hongchang
1 / 5 shared
Siegel, Donald J.
1 / 2 shared
Liu, Yijie
1 / 2 shared
Mukherjee, Partha P.
1 / 6 shared
Watt, John
1 / 9 shared
Greene, Samuel M.
1 / 1 shared
Wang, Yixian
1 / 5 shared
Tsai, Wanyu
1 / 1 shared
Celio, Hugo
1 / 3 shared
Fang, Ruyi
1 / 2 shared
Naik, Kaustubh G.
1 / 4 shared
Yang, Guang
1 / 13 shared
Vishnugopi, Bairav S.
1 / 6 shared
Banerjee, Sanjay K.
1 / 6 shared
Sonde, Sushant Sudam
1 / 6 shared
Colombo, Luigi
1 / 12 shared
Tutuc, Emanuel
1 / 3 shared
Corbet, Chris M.
1 / 2 shared
Lu, Ning
1 / 2 shared
Kim, Moon J.
1 / 1 shared
Purnell, Mark A.
1 / 1 shared
Clements, Thomas
1 / 1 shared
Vinther, Jakob
2 / 2 shared
Martin, Peter George
1 / 5 shared
Gabbott, Sarah E.
2 / 2 shared
Ruoff, Rodney S.
1 / 4 shared
Chou, Harry
1 / 1 shared
Ghosh, Rudresh
1 / 1 shared
Rabenstein, Renate
1 / 1 shared
Habersetzer, Jörg
1 / 1 shared
Schaal, Stephan
1 / 1 shared
Feseha, Mulugeta
1 / 1 shared
Gardner, James
1 / 1 shared
Singh, Suresh
1 / 1 shared
Colleary, Caitlin
1 / 1 shared
Wuttke, Michael
1 / 3 shared
Sylvestersen, Rene Lyng
1 / 1 shared
Jacobs, Louis L.
1 / 1 shared
Clemens, Matthew
1 / 1 shared
Currano, Ellen D.
1 / 1 shared
Jacobs, Bonnie F.
1 / 1 shared
Chart of publication period
2023
2017
2016
2015

Co-Authors (by relevance)

  • Mitlin, David
  • Hao, Hongchang
  • Siegel, Donald J.
  • Liu, Yijie
  • Mukherjee, Partha P.
  • Watt, John
  • Greene, Samuel M.
  • Wang, Yixian
  • Tsai, Wanyu
  • Celio, Hugo
  • Fang, Ruyi
  • Naik, Kaustubh G.
  • Yang, Guang
  • Vishnugopi, Bairav S.
  • Banerjee, Sanjay K.
  • Sonde, Sushant Sudam
  • Colombo, Luigi
  • Tutuc, Emanuel
  • Corbet, Chris M.
  • Lu, Ning
  • Kim, Moon J.
  • Purnell, Mark A.
  • Clements, Thomas
  • Vinther, Jakob
  • Martin, Peter George
  • Gabbott, Sarah E.
  • Ruoff, Rodney S.
  • Chou, Harry
  • Ghosh, Rudresh
  • Rabenstein, Renate
  • Habersetzer, Jörg
  • Schaal, Stephan
  • Feseha, Mulugeta
  • Gardner, James
  • Singh, Suresh
  • Colleary, Caitlin
  • Wuttke, Michael
  • Sylvestersen, Rene Lyng
  • Jacobs, Louis L.
  • Clemens, Matthew
  • Currano, Ellen D.
  • Jacobs, Bonnie F.
OrganizationsLocationPeople

article

Revealing the planar chemistry of two-dimensional heterostructures at the atomic level

  • Dolocan, Andrei
  • Ruoff, Rodney S.
  • Chou, Harry
  • Ghosh, Rudresh
Abstract

<jats:title>Abstract</jats:title><jats:p>Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.</jats:p>

Topics
  • impedance spectroscopy
  • atomic force microscopy
  • chemical composition
  • two-dimensional
  • Raman spectroscopy
  • spectrometry
  • secondary ion mass spectrometry