People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pandey, Mohnish
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Shining Light on Sulfide Perovskites: LaYS 3 Material Properties and Solar Cellscitations
- 2019Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cellscitations
- 2018Computational Screening of Light-absorbing Materials for Photoelectrochemical Water Splittingcitations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS 3citations
- 2017Band structure engineered layered metals for low-loss plasmonicscitations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3citations
- 2016Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structurescitations
- 2016Defect-Tolerant Monolayer Transition Metal Dichalcogenidescitations
- 2015Band-gap engineering of functional perovskites through quantum confinement and tunnelingcitations
- 2013Hydroxylation induced stabilization of near-surface rocksalt nanostructure on wurtzite ZnO structurecitations
Places of action
Organizations | Location | People |
---|
article
Band structure engineered layered metals for low-loss plasmonics
Abstract
Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics.