Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Polini, M.

  • Google
  • 5
  • 42
  • 319

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2017Edge currents shunt the insulating bulk in gapped graphene97citations
  • 2017Edge currents shunt the insulating bulk in gapped graphene97citations
  • 2017Edge currents shunt the insulating bulk in gapped graphene97citations
  • 2017Orbital and spin order in oxide two-dimensional electron gases8citations
  • 2014Stable path to ferromagnetic hydrogenated graphene growth20citations

Places of action

Chart of shared publication
Thompson, Michael Dermot
1 / 2 shared
Prance, Jonathan Robert
1 / 1 shared
Watanabe, K.
3 / 26 shared
Geim, Andre
1 / 12 shared
Birkbeck, John
1 / 3 shared
Hu, Shuang
1 / 1 shared
Novoselov, Konstantin
1 / 6 shared
Kretinin, Andrey
1 / 2 shared
Yu, G. L.
2 / 3 shared
Vera-Marun, Ivan J.
1 / 10 shared
Bandurin, Denis
1 / 3 shared
Taniguchi, T.
3 / 17 shared
Zhu, M. J.
2 / 2 shared
Ben Shalom, Moshe
1 / 1 shared
Mishchenko, Artem
2 / 11 shared
Prance, Jonathan
1 / 1 shared
Bandurin, D. A.
1 / 2 shared
Novoselov, K. S.
1 / 10 shared
Kretinin, A. V.
1 / 1 shared
Geim, A. K.
1 / 10 shared
Thompson, Michael
1 / 5 shared
Vera-Marun, I. J.
1 / 5 shared
Birkbeck, J.
2 / 4 shared
Hu, S.
2 / 9 shared
Shalom, M. Ben
1 / 1 shared
K., Geim A.
1 / 1 shared
J., Vera-Marun I.
1 / 1 shared
V., Kretinin A.
1 / 1 shared
L., Yu G.
1 / 1 shared
Mishchenko, A.
1 / 3 shared
B., Shalom M.
1 / 1 shared
D., Thompson M.
1 / 1 shared
A., Bandurin D.
1 / 1 shared
S., Novoselov K.
1 / 2 shared
J., Zhu M.
1 / 1 shared
R., Prance J.
1 / 1 shared
H., Macdonald A.
1 / 1 shared
R., Tolsma J.
1 / 1 shared
Abanov, A.
1 / 1 shared
Sinova, J.
1 / 14 shared
Macdonald, A. H.
1 / 4 shared
Hemmatiyan, S.
1 / 1 shared
Chart of publication period
2017
2014

Co-Authors (by relevance)

  • Thompson, Michael Dermot
  • Prance, Jonathan Robert
  • Watanabe, K.
  • Geim, Andre
  • Birkbeck, John
  • Hu, Shuang
  • Novoselov, Konstantin
  • Kretinin, Andrey
  • Yu, G. L.
  • Vera-Marun, Ivan J.
  • Bandurin, Denis
  • Taniguchi, T.
  • Zhu, M. J.
  • Ben Shalom, Moshe
  • Mishchenko, Artem
  • Prance, Jonathan
  • Bandurin, D. A.
  • Novoselov, K. S.
  • Kretinin, A. V.
  • Geim, A. K.
  • Thompson, Michael
  • Vera-Marun, I. J.
  • Birkbeck, J.
  • Hu, S.
  • Shalom, M. Ben
  • K., Geim A.
  • J., Vera-Marun I.
  • V., Kretinin A.
  • L., Yu G.
  • Mishchenko, A.
  • B., Shalom M.
  • D., Thompson M.
  • A., Bandurin D.
  • S., Novoselov K.
  • J., Zhu M.
  • R., Prance J.
  • H., Macdonald A.
  • R., Tolsma J.
  • Abanov, A.
  • Sinova, J.
  • Macdonald, A. H.
  • Hemmatiyan, S.
OrganizationsLocationPeople

article

Edge currents shunt the insulating bulk in gapped graphene

  • Watanabe, K.
  • Polini, M.
  • Prance, Jonathan
  • Yu, G. L.
  • Bandurin, D. A.
  • Taniguchi, T.
  • Novoselov, K. S.
  • Zhu, M. J.
  • Kretinin, A. V.
  • Geim, A. K.
  • Thompson, Michael
  • Vera-Marun, I. J.
  • Birkbeck, J.
  • Hu, S.
  • Mishchenko, Artem
  • Shalom, M. Ben
Abstract

An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

Topics
  • impedance spectroscopy
  • resistivity
  • semiconductor
  • superconductivity
  • superconductivity