Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sunkara, Mahendra K.

  • Google
  • 1
  • 14
  • 199

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction199citations

Places of action

Chart of shared publication
Cummins, Dustin R.
1 / 1 shared
Sumanasekera, Gamini
1 / 1 shared
Jasinski, Jacek
1 / 2 shared
Lou, Jun
1 / 8 shared
Mohite, Aditya D.
1 / 2 shared
Sherehiy, Andriy
1 / 1 shared
Schulze, Roland K.
1 / 1 shared
Martinez-Garcia, Alejandro
1 / 1 shared
Kappera, Rajesh
1 / 1 shared
Martinez, Ulises
1 / 1 shared
Gupta, Gautam
1 / 7 shared
Gupta, Ram K.
1 / 12 shared
Zhang, Jing
1 / 11 shared
Chhowalla, Manish
1 / 7 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Cummins, Dustin R.
  • Sumanasekera, Gamini
  • Jasinski, Jacek
  • Lou, Jun
  • Mohite, Aditya D.
  • Sherehiy, Andriy
  • Schulze, Roland K.
  • Martinez-Garcia, Alejandro
  • Kappera, Rajesh
  • Martinez, Ulises
  • Gupta, Gautam
  • Gupta, Ram K.
  • Zhang, Jing
  • Chhowalla, Manish
OrganizationsLocationPeople

article

Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

  • Cummins, Dustin R.
  • Sumanasekera, Gamini
  • Jasinski, Jacek
  • Lou, Jun
  • Mohite, Aditya D.
  • Sherehiy, Andriy
  • Schulze, Roland K.
  • Martinez-Garcia, Alejandro
  • Sunkara, Mahendra K.
  • Kappera, Rajesh
  • Martinez, Ulises
  • Gupta, Gautam
  • Gupta, Ram K.
  • Zhang, Jing
  • Chhowalla, Manish
Abstract

<jats:title>Abstract</jats:title><jats:p>Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO<jats:sub>x</jats:sub>/MoS<jats:sub>2</jats:sub> core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. <jats:italic>In situ</jats:italic> electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO<jats:sub>x</jats:sub> core in the core-shell nanowires, which leads to improved electrocatalytic performance.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • molybdenum
  • Platinum
  • Hydrogen
  • current density
  • durability