Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leutenegger, D.

  • Google
  • 2
  • 10
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Monotropic polymorphism in a glass-forming metallic alloy13citations
  • 2016Solid–solid phase transitions via melting in metals86citations

Places of action

Chart of shared publication
Pogatscher, Stefan
1 / 61 shared
Schäublin, R.
1 / 4 shared
Maris, P.
1 / 1 shared
Schawe, J. E. K.
1 / 1 shared
Löffler, Jörg F.
1 / 22 shared
Uggowitzer, Peter J.
1 / 62 shared
Uggowitzer, P. J.
1 / 16 shared
Löffler, J. F.
1 / 15 shared
Pogatscher, S.
1 / 6 shared
Schawe, Jürgen E. K.
1 / 14 shared
Chart of publication period
2018
2016

Co-Authors (by relevance)

  • Pogatscher, Stefan
  • Schäublin, R.
  • Maris, P.
  • Schawe, J. E. K.
  • Löffler, Jörg F.
  • Uggowitzer, Peter J.
  • Uggowitzer, P. J.
  • Löffler, J. F.
  • Pogatscher, S.
  • Schawe, Jürgen E. K.
OrganizationsLocationPeople

article

Solid–solid phase transitions via melting in metals

  • Uggowitzer, P. J.
  • Leutenegger, D.
  • Löffler, J. F.
  • Pogatscher, S.
  • Schawe, Jürgen E. K.
Abstract

<jats:title>Abstract</jats:title><jats:p>Observing solid–solid phase transitions <jats:italic>in-situ</jats:italic> with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real’ atomic system. We observe this transition in a bulk glass-forming metallic system <jats:italic>in-situ</jats:italic> using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • theory
  • simulation
  • glass
  • glass
  • phase transition
  • differential scanning calorimetry
  • forming