Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Flokstra, Mg

  • Google
  • 5
  • 42
  • 290

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Spin-orbit driven superconducting proximity effects in Pt/Nb thin films10citations
  • 2019Manifestation of the electromagnetic proximity effect in superconductor-ferromagnet thin film structures18citations
  • 2018Observation of anomalous Meissner screening in Cu/Nb and Cu/Nb/Co thin films37citations
  • 2016Remotely induced magnetism in a normal metal using a superconducting spin-valve61citations
  • 2015Beating the Stoner criterion using molecular interfaces164citations

Places of action

Chart of shared publication
Suter, Andreas
2 / 6 shared
Prokscha, Thomas
3 / 15 shared
Trainer, Christopher
1 / 4 shared
Luetkens, Hubertus
2 / 10 shared
Wahl, Peter
1 / 10 shared
Miller, David
1 / 8 shared
Morenzoni, Elvezio
1 / 5 shared
Burnell, Gavin
3 / 9 shared
Bobkov, Alexander M.
1 / 2 shared
Lee, Stephen Leslie
4 / 14 shared
Bobkova, Irina V.
1 / 2 shared
Stewart, Rhea
2 / 6 shared
Suter, A.
2 / 9 shared
Morenzoni, E.
2 / 7 shared
Luetkens, H.
3 / 14 shared
Langridge, S.
2 / 17 shared
Lee, S. L.
1 / 4 shared
Satchell, N.
1 / 6 shared
Burnell, G.
2 / 17 shared
Stewart, R.
1 / 2 shared
Prokscha, T.
2 / 14 shared
Satchell, Nathan
1 / 2 shared
Kinane, Cj
1 / 5 shared
Langridge, Sean
1 / 5 shared
Isidori, Aldo
1 / 1 shared
Eschrig, Matthias
1 / 8 shared
Kim, Jangyong
1 / 1 shared
Pugach, Nataliya
1 / 1 shared
Curran, Pj
1 / 1 shared
Cooper, Joshaniel F. K.
1 / 2 shared
Bending, Sj
1 / 1 shared
Hickey, B. J.
1 / 8 shared
Sterbinsky, G. E.
1 / 3 shared
Wheeler, M. C.
1 / 2 shared
Maclaren, D. A.
1 / 8 shared
Moorsom, T.
1 / 5 shared
Cespedes, O.
1 / 12 shared
Arena, D. A.
1 / 4 shared
Teobaldi, G.
1 / 6 shared
Ali, M.
1 / 47 shared
Mamari, F. Al
1 / 1 shared
Deacon, W.
1 / 3 shared
Chart of publication period
2023
2019
2018
2016
2015

Co-Authors (by relevance)

  • Suter, Andreas
  • Prokscha, Thomas
  • Trainer, Christopher
  • Luetkens, Hubertus
  • Wahl, Peter
  • Miller, David
  • Morenzoni, Elvezio
  • Burnell, Gavin
  • Bobkov, Alexander M.
  • Lee, Stephen Leslie
  • Bobkova, Irina V.
  • Stewart, Rhea
  • Suter, A.
  • Morenzoni, E.
  • Luetkens, H.
  • Langridge, S.
  • Lee, S. L.
  • Satchell, N.
  • Burnell, G.
  • Stewart, R.
  • Prokscha, T.
  • Satchell, Nathan
  • Kinane, Cj
  • Langridge, Sean
  • Isidori, Aldo
  • Eschrig, Matthias
  • Kim, Jangyong
  • Pugach, Nataliya
  • Curran, Pj
  • Cooper, Joshaniel F. K.
  • Bending, Sj
  • Hickey, B. J.
  • Sterbinsky, G. E.
  • Wheeler, M. C.
  • Maclaren, D. A.
  • Moorsom, T.
  • Cespedes, O.
  • Arena, D. A.
  • Teobaldi, G.
  • Ali, M.
  • Mamari, F. Al
  • Deacon, W.
OrganizationsLocationPeople

article

Beating the Stoner criterion using molecular interfaces

  • Hickey, B. J.
  • Burnell, G.
  • Sterbinsky, G. E.
  • Wheeler, M. C.
  • Maclaren, D. A.
  • Moorsom, T.
  • Cespedes, O.
  • Arena, D. A.
  • Teobaldi, G.
  • Ali, M.
  • Mamari, F. Al
  • Luetkens, H.
  • Lee, Stephen Leslie
  • Prokscha, T.
  • Flokstra, Mg
  • Deacon, W.
Abstract

Only three elements are ferromagnetic at room temperature: the transition metals iron, cobalt and nickel. The Stoner criterion explains why iron is ferromagnetic but manganese, for example, is not, even though both elements have an unfilled <i>3d</i> shell and are adjacent in the periodic table: according to this criterion, the product of the density of states and the exchange integral must be greater than unity for spontaneous spin ordering to emerge. Here we demonstrate that it is possible to alter the electronic states of non-ferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, to overcome the Stoner criterion and make them ferromagnetic at room temperature. This effect is achieved via interfaces between metallic thin films and C<sub>60</sub> molecular layers. The emergent ferromagnetic state exists over several layers of the metal before being quenched at large sample thicknesses by the materiala € s bulk properties. Although the induced magnetization is easily measurable by magnetometry, low-energy muon spin spectroscopy provides insight into its distribution by studying the depolarization process of low-energy muons implanted in the sample. This technique indicates localized spin-ordered states at, and close to, the metal-molecule interface. Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms, owing to electron transfer. This mechanism might allow for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic components such as organic semiconductors. Charge transfer at molecular interfaces may thus be used to control spin polarization or magnetization, with consequences for the design of devices for electronic, power or computing applications (see, for example, refs 6 and 7).

Topics
  • density
  • impedance spectroscopy
  • nickel
  • theory
  • thin film
  • simulation
  • semiconductor
  • copper
  • density functional theory
  • cobalt
  • iron
  • Manganese
  • magnetization
  • metamaterial
  • spin polarization