Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Giri, Gaurav

  • Google
  • 4
  • 39
  • 1233

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Enhancing Organic Semiconductor Molecular Packing Using Perovskite Interfaces to Improve Singlet Fission3citations
  • 2015Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECT64citations
  • 2014One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films140citations
  • 2011Tuning charge transport in solution-sheared organic semiconductors using lattice strain1026citations

Places of action

Chart of shared publication
Guthrie, Stephanie
1 / 1 shared
Bragg, Arthur E.
1 / 1 shared
Westendorff, Karl
1 / 1 shared
Stone, Kevin H.
1 / 7 shared
Paolucci, Christopher
1 / 1 shared
Choi, Joshua J.
1 / 1 shared
Chen, Zhuo
1 / 8 shared
Sviripa, Anna
1 / 1 shared
Conley, Ashley M.
1 / 2 shared
Dziatko, Rachel A.
1 / 1 shared
Nam, Ji Hyun
1 / 1 shared
Hong, Yongtaek
1 / 1 shared
Gu, Xiaodan
1 / 5 shared
Ha, Jewook
1 / 1 shared
Bao, Zhenan
3 / 20 shared
Park, Steve
1 / 2 shared
Lee, Tae Hoon
1 / 3 shared
Pitner, Gregory
1 / 1 shared
Park, Joonsuk
1 / 3 shared
Shaw, Leo
1 / 2 shared
Koo, Ja Hoon
1 / 3 shared
Lenn, Kristina M.
1 / 1 shared
Chiu, Melanie
1 / 1 shared
Lin, Debora W.
1 / 1 shared
Allen, Ranulfo A.
1 / 1 shared
Reinspach, Julia A.
1 / 1 shared
Smilgies, Detlef Matthias
1 / 1 shared
Mannsfeld, Stefan C. B.
1 / 18 shared
Clancy, Paulette
1 / 3 shared
Li, Ruipeng
1 / 14 shared
Diao, Ying
1 / 3 shared
Aspuru-Guzik, Alan
1 / 1 shared
Becerril, Hector A.
1 / 1 shared
Lee, Sang Yoon
1 / 1 shared
Verploegen, Eric
1 / 2 shared
Toney, Michael F.
1 / 30 shared
Kim, Do Hwan
1 / 1 shared
Atahan-Evrenk, Sule
1 / 1 shared
Mannsfeld, Stefan Cb
1 / 4 shared
Chart of publication period
2023
2015
2014
2011

Co-Authors (by relevance)

  • Guthrie, Stephanie
  • Bragg, Arthur E.
  • Westendorff, Karl
  • Stone, Kevin H.
  • Paolucci, Christopher
  • Choi, Joshua J.
  • Chen, Zhuo
  • Sviripa, Anna
  • Conley, Ashley M.
  • Dziatko, Rachel A.
  • Nam, Ji Hyun
  • Hong, Yongtaek
  • Gu, Xiaodan
  • Ha, Jewook
  • Bao, Zhenan
  • Park, Steve
  • Lee, Tae Hoon
  • Pitner, Gregory
  • Park, Joonsuk
  • Shaw, Leo
  • Koo, Ja Hoon
  • Lenn, Kristina M.
  • Chiu, Melanie
  • Lin, Debora W.
  • Allen, Ranulfo A.
  • Reinspach, Julia A.
  • Smilgies, Detlef Matthias
  • Mannsfeld, Stefan C. B.
  • Clancy, Paulette
  • Li, Ruipeng
  • Diao, Ying
  • Aspuru-Guzik, Alan
  • Becerril, Hector A.
  • Lee, Sang Yoon
  • Verploegen, Eric
  • Toney, Michael F.
  • Kim, Do Hwan
  • Atahan-Evrenk, Sule
  • Mannsfeld, Stefan Cb
OrganizationsLocationPeople

article

Tuning charge transport in solution-sheared organic semiconductors using lattice strain

  • Aspuru-Guzik, Alan
  • Becerril, Hector A.
  • Lee, Sang Yoon
  • Verploegen, Eric
  • Giri, Gaurav
  • Bao, Zhenan
  • Toney, Michael F.
  • Kim, Do Hwan
  • Atahan-Evrenk, Sule
  • Mannsfeld, Stefan Cb
Abstract

Circuits based on organic semiconductors are being actively explored for flexible, transparent and low-cost electronic applications. But to realize such applications, the charge carrier mobilities of solution-processed organic semiconductors must be improved. For inorganic semiconductors, a general method of increasing charge carrier mobility is to introduce strain within the crystal lattice. Here we describe a solution-processing technique for organic semiconductors in which lattice strain is used to increase charge carrier mobilities by introducing greater electron orbital overlap between the component molecules. For organic semiconductors, the spacing between cofacially stacked, conjugated backbones (the π-π stacking distance) greatly influences electron orbital overlap and therefore mobility. Using our method to incrementally introduce lattice strain, we alter the π-π stacking distance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) from 3.33 Å to 3.08 Å. We believe that 3.08 Å is the shortest π-π stacking distance that has been achieved in an organic semiconductor crystal lattice (although a π-π distance of 3.04 Å has been achieved through intramolecular bonding). The positive charge carrier (hole) mobility in TIPS-pentacene transistors increased from 0.8 cm(2) V(-1) s(-1) for unstrained films to a high mobility of 4.6 cm(2) V(-1) s(-1) for a strained film. Using solution processing to modify molecular packing through lattice strain should aid the development of high-performance, low-cost organic semiconducting devices.

Topics
  • impedance spectroscopy
  • mobility
  • semiconductor
  • crystalline lattice
  • solution processing