Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ou, Haiyan

  • Google
  • 17
  • 60
  • 808

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Novel Photonic Applications of Silicon Carbide40citations
  • 2017Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O363citations
  • 2017Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O363citations
  • 2017Low Temperature Photoluminescence of 6H fluorescent SiCcitations
  • 2016Electrically driven surface plasmon light-emitting diodescitations
  • 2016Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallizationcitations
  • 2016Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO26citations
  • 2016Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO26citations
  • 2015A new type of white light-emitting diode light source basing on fluorescent SiCcitations
  • 2015A new type of white light-emitting diode light source basing on fluorescent SiCcitations
  • 2013Doping and stability of 3C-SiC: from thinfilm to bulk growthcitations
  • 2012Fluorescent SiC as a new material for white LEDs34citations
  • 2012Crystal growth and characterization of fluorescent SiCcitations
  • 2008Ge nanoclusters in PECVD-deposited glass caused only by heat treatment5citations
  • 2007Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation4citations
  • 2006Strained silicon as a new electro-optic material587citations
  • 2004GE NANOCLUSTERS IN PLANAR GLASS WAVEGUIDES DEPOSITED BY PECVDcitations

Places of action

Chart of shared publication
Lu, Yaoqin
1 / 1 shared
Kollmuß, Manuel
1 / 2 shared
Wellmann, Peter J.
1 / 208 shared
Tabouret, Vincent
1 / 1 shared
Shi, Xiaodong
1 / 2 shared
Steiner, Johannes
1 / 4 shared
Chaussende, Didier
1 / 4 shared
Syväjärvi, Mikael
6 / 12 shared
Jinno, Daiki
2 / 2 shared
Iwasa, Yoshimi
2 / 2 shared
Kamiyama, Satoshi
2 / 2 shared
Ou, Yiyu
11 / 11 shared
Petersen, Paul Michael
4 / 8 shared
Lu, Weifang
3 / 3 shared
Jokubavicius, Valdas
5 / 8 shared
Künecke, Ulrike
1 / 2 shared
Wellmann, Peter
3 / 5 shared
Wei, Yi
1 / 2 shared
Kopylov, Oleksii
2 / 2 shared
Iida, Daisuke
2 / 2 shared
Fadil, Ahmed
6 / 6 shared
Kaiser, Michl
2 / 2 shared
Argyraki, Aikaterini
2 / 3 shared
Liljedahl, R.
3 / 3 shared
Wellmann, P.
3 / 5 shared
Yakimova, R.
1 / 9 shared
Linnarsson, M. K.
3 / 4 shared
Kaiser, M.
2 / 7 shared
Jokubavicius, V.
3 / 4 shared
Sun, J.
1 / 16 shared
Syväjärvi, M.
3 / 3 shared
Sun, J. W.
2 / 2 shared
Spiecker, E.
1 / 72 shared
Müller, J.
1 / 24 shared
Ariyawong, K.
1 / 1 shared
Hens, P.
2 / 3 shared
Gulbinas, K.
1 / 1 shared
Kamiyama, S.
1 / 2 shared
Kaisr, M.
1 / 1 shared
Grivickas, V.
1 / 1 shared
Hupfer, T.
1 / 1 shared
Grumsen, Flemming Bjerg
2 / 33 shared
Rørdam, Troels Peter
2 / 2 shared
Shi, Peixiong
1 / 3 shared
Rottwitt, Karsten
3 / 12 shared
Horsewell, Andy
2 / 14 shared
Berg, Rolf W.
3 / 9 shared
Moulin, Gaid
1 / 1 shared
Zsigri, Beata
1 / 4 shared
Fage-Pedersen, Jacob
1 / 3 shared
Jacobsen, Rune Shim
1 / 3 shared
Hansen, Ole
1 / 83 shared
Borel, Peter Ingo
1 / 5 shared
Bjarklev, Anders Overgaard
1 / 11 shared
Frandsen, Lars Hagedorn
1 / 19 shared
Andersen, Karin Nordström
1 / 2 shared
Peucheret, Christophe
1 / 5 shared
Kristensen, Martin
1 / 5 shared
Lavrinenko, Andrei V.
1 / 98 shared
Olsen, Johnny H.
1 / 1 shared
Chart of publication period
2023
2017
2016
2015
2013
2012
2008
2007
2006
2004

Co-Authors (by relevance)

  • Lu, Yaoqin
  • Kollmuß, Manuel
  • Wellmann, Peter J.
  • Tabouret, Vincent
  • Shi, Xiaodong
  • Steiner, Johannes
  • Chaussende, Didier
  • Syväjärvi, Mikael
  • Jinno, Daiki
  • Iwasa, Yoshimi
  • Kamiyama, Satoshi
  • Ou, Yiyu
  • Petersen, Paul Michael
  • Lu, Weifang
  • Jokubavicius, Valdas
  • Künecke, Ulrike
  • Wellmann, Peter
  • Wei, Yi
  • Kopylov, Oleksii
  • Iida, Daisuke
  • Fadil, Ahmed
  • Kaiser, Michl
  • Argyraki, Aikaterini
  • Liljedahl, R.
  • Wellmann, P.
  • Yakimova, R.
  • Linnarsson, M. K.
  • Kaiser, M.
  • Jokubavicius, V.
  • Sun, J.
  • Syväjärvi, M.
  • Sun, J. W.
  • Spiecker, E.
  • Müller, J.
  • Ariyawong, K.
  • Hens, P.
  • Gulbinas, K.
  • Kamiyama, S.
  • Kaisr, M.
  • Grivickas, V.
  • Hupfer, T.
  • Grumsen, Flemming Bjerg
  • Rørdam, Troels Peter
  • Shi, Peixiong
  • Rottwitt, Karsten
  • Horsewell, Andy
  • Berg, Rolf W.
  • Moulin, Gaid
  • Zsigri, Beata
  • Fage-Pedersen, Jacob
  • Jacobsen, Rune Shim
  • Hansen, Ole
  • Borel, Peter Ingo
  • Bjarklev, Anders Overgaard
  • Frandsen, Lars Hagedorn
  • Andersen, Karin Nordström
  • Peucheret, Christophe
  • Kristensen, Martin
  • Lavrinenko, Andrei V.
  • Olsen, Johnny H.
OrganizationsLocationPeople

article

Strained silicon as a new electro-optic material

  • Moulin, Gaid
  • Zsigri, Beata
  • Fage-Pedersen, Jacob
  • Jacobsen, Rune Shim
  • Hansen, Ole
  • Borel, Peter Ingo
  • Bjarklev, Anders Overgaard
  • Frandsen, Lars Hagedorn
  • Ou, Haiyan
  • Andersen, Karin Nordström
  • Peucheret, Christophe
  • Kristensen, Martin
  • Lavrinenko, Andrei V.
Abstract

For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top of a silicon waveguide, and the induced nonlinear coefficient, (2)15 pm V-1, makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck5 in modern computers by replacing the electronic bus with a much faster optical alternative.

Topics
  • impedance spectroscopy
  • Silicon