People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paxton, Anthony Thomas
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Ising-like models for stacking faults in a free electron metalcitations
- 2017Theoretical evaluation of the role of crystal defects on local equilibrium and effective diffusivity of hydrogen in ironcitations
- 2017Hydrogen embrittlement II.citations
- 2013Analysis of a carbon dimer bound to a vacancy in iron using density functional theory and a tight binding modelcitations
- 2010Microscopic origin of channeled flow in lamellar titanium aluminidecitations
- 2005Stability of Sr adatom model structures for SrTiO3(001) surface reconstructionscitations
- 2005Theory of the near K-edge structure in electron energy loss spectroscopycitations
- 2004Bismuth embrittlement of copper is an atomic size effectcitations
- 2001Material effects on stress-induced defect generation in trenched silicon-on-insulator structurescitations
- 2000Effect of relaxation on the oxygen K-edge electron energy-loss near-edge structure in yttria-stabilized zirconiacitations
Places of action
Organizations | Location | People |
---|
article
Bismuth embrittlement of copper is an atomic size effect
Abstract
Embrittlement by the segregation of impurity elements to grain boundaries is one of a small number of phenomena that can lead to metallurgical failure by fast fracture. Here we settle a question that has been debated for over a hundred years: how can minute traces of bismuth in copper cause this ductile metal to fail in a brittle manner? Three hypotheses for Bi embrittlement of Cu exist: two assign an electronic effect to either a strengthening or weakening of bonds, the third postulates a simple atomic size effect. Here we report first principles quantum mechanical calculations that allow us to reject the electronic hypotheses, while supporting a size effect. We show that upon segregation to the grain boundary, the large Bi atoms weaken the interatomic bonding by pushing apart the Cu atoms at the interface. The resolution of the mechanism underlying grain boundary weakening should be relevant for all cases of embrittlement by oversize impurities.