People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abild-Pedersen, Frank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Application of machine learning to discover new intermetallic catalysts for the hydrogen evolution and the oxygen reduction reactionscitations
- 2022Colloidal Platinum-Copper Nanocrystal Alloy Catalysts Surpass Platinum in Low-Temperature Propene Combustion.citations
- 2021Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to COcitations
- 2021Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration.citations
- 2019Understanding Structure-Property Relationships of MoO3-Promoted Rh Catalysts for Syngas Conversion to Alcohols.citations
- 2017Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenatescitations
- 2017Mechanistic insights into heterogeneous methane activationcitations
- 2015Surface Tension Effects on the Reactivity of Metal Nanoparticlescitations
- 2014Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanolcitations
- 2013Density functional theory studies of transition metal nanoparticles in catalysis
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxidescitations
- 2009A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST
- 2008Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylenecitations
- 2004Atomic-scale imaging of carbon nanofibre growthcitations
Places of action
Organizations | Location | People |
---|
article
Atomic-scale imaging of carbon nanofibre growth
Abstract
The synthesis of carbon nanotubes with predefined structure and functionality plays a central role in the field of nanotechnology, whereas the inhibition of carbon growth is needed to prevent a breakdown of industrial catalysts for hydrogen and synthesis gas production. The growth of carbon nanotubes and nanofibres has therefore been widely studied. Recent advances in in situ techniques now open up the possibility of studying gas-solid interactions at the atomic level. Here we present time-resolved, high-resolution in situ transmission electron microscope observations of the formation of carbon nanofibres from methane decomposition over supported nickel nanocrystals. Carbon nanofibres are observed to develop through a reaction-induced reshaping of the nickel nanocrystals. Specifically, the nucleation and growth of graphene layers are found to be assisted by a dynamic formation and restructuring of mono-atomic step edges at the nickel surface. Density-functional theory calculations indicate that the observations are consistent with a growth mechanism involving surface diffusion of carbon and nickel atoms. The finding that metallic step edges act as spatiotemporal dynamic growth sites may be important for understanding other types of catalytic reactions and nanomaterial syntheses.