People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäntysalo, Matti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2025Enhancing specific capacitance and energy density in printed supercapacitors : The role of activated wood carbon and electrolyte dynamicscitations
- 2024Flexible screen-printed supercapacitors with asymmetric PANI/CDC–AC electrodes and aqueous electrolytecitations
- 2024Recyclability of novel energy harvesting and storage technologies for IoT and wireless sensor networkscitations
- 2024Monolithic supercapacitors prepared by roll-to-roll screen printingcitations
- 2023Wear reliability and failure mechanism of inkjet-printed conductors on paperboard substratecitations
- 2023Screen printable PANI/carbide-derived carbon supercapacitor electrode ink with chitosan bindercitations
- 2022Flexible Polymer Rectifying Diode on Plastic Foils with MoO3Hole Injection
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Design of Thin, High Permittivity, Multiband, Monopole-Like Antennas
- 2019A Fully Printed Ultra-Thin Charge Amplifier for On-Skin Biosignal Measurementscitations
- 2018High-resolution E-jet Enhanced MEMS Packaging
- 2017Inkjet printing technology for increasing the I/O density of 3D TSV interposerscitations
- 2017Combination of E-jet and inkjet printing for additive fabrication of multilayer high-density RDL of silicon interposercitations
- 2016Fabrication and electrical characterization of partially metallized vias fabricated by inkjetcitations
- 2015Metallization of high density TSVs using super inkjet technologycitations
- 2010Novel Approach on Application Manufacturing Using Inkjet Printing, Laser Ablation and New Polymer Substrate
- 2009Sintering of printed nanoparticle structures using laser treatment
Places of action
Organizations | Location | People |
---|
article
Inkjet printing technology for increasing the I/O density of 3D TSV interposers
Abstract
Interposers with through-silicon vias (TSVs) play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems. In the current practice of fabricating interposers, solder balls are placed next to the vias; however, this approach requires a large foot print for the input/output (I/O) connections. Therefore, in this study, we investigate the possibility of placing the solder balls directly on top of the vias, thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections. To reach this goal, inkjet printing (that is, piezo and super inkjet) was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer. The under bump metallization (UBM) pads were also successfully printed with inkjet technology on top of the polymer-filled vias, using either Ag or Au inks. The reliability of the TSV interposers was investigated by a temperature cycling stress test (−40 °C to +125 °C). The stress test showed no impact on DC resistance of the TSVs; however, shrinkage and delamination of the polymer was observed, along with some micro-cracks in the UBM pads. For proof of concept, SnAgCu-based solder balls were jetted on the UBM pads.<br/>