People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Momand, Jamo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive groupcitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Differences in Sb2Te3 growth by pulsed laser and sputter depositioncitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodotscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applicationscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospectscitations
- 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivationcitations
- 2017Formation of resonant bonding during growth of ultrathin GeTe filmscitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin filmscitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Formation of resonant bonding during growth of ultrathin GeTe films
Abstract
A highly unconventional growth scenario is reported upon deposition of GeTe films on the hydrogen passivated Si(111) surface. Initially, an amorphous film forms for growth parameters that should yield a crystalline material. The entire amorphous film then crystallizes once a critical thickness of four GeTe bilayers is reached, subsequently following the GeTe(111) || Si(111): GeTe [-110] || Si[-110] epitaxial relationship rigorously. Hence, in striking contrast to conventional lattice-matched epitaxial systems, a drastic improvement in atomic order is observed above a critical film thickness. Raman spectra show a remarkable change of vibrational modes above the critical thickness that is attributed to a change in the nature of the bonds: While ordinary covalent bonding is found in ultrathin films, resonant bonding can prevail only once a critical thickness is reached. This scenario is further supported by density functional theory calculations showing that ultrathin films do not utilize resonant bonding in contrast to the bulk phase. These findings are important not only for ultrathin films of phase-change materials such as GeTe and GeSbTe, which are employed in phase-change memories, but also for thermoelectrics and topological insulators such as Bi2Te3 and Sb2Te3, where resonant bonding might also have a significant role.