Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krymarys, Ewa

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Ultrahigh‐Pressure Acoustic Velocities of Aluminous Silicate Glass up to 155 GPa With Implications for the Structure and Dynamics of the Deep Terrestrial Magma Ocean4citations

Places of action

Chart of shared publication
Saha, Pinku
1 / 2 shared
Murakami, Motohiko
1 / 5 shared
Mccammon, Catherine
1 / 10 shared
Liebske, Christian
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Saha, Pinku
  • Murakami, Motohiko
  • Mccammon, Catherine
  • Liebske, Christian
OrganizationsLocationPeople

article

Ultrahigh‐Pressure Acoustic Velocities of Aluminous Silicate Glass up to 155 GPa With Implications for the Structure and Dynamics of the Deep Terrestrial Magma Ocean

  • Saha, Pinku
  • Murakami, Motohiko
  • Mccammon, Catherine
  • Liebske, Christian
  • Krymarys, Ewa
Abstract

<jats:title>Abstract</jats:title><jats:p>We have carried out in situ high‐pressure acoustic velocity measurements of (Fe<jats:sup>2+</jats:sup>, Al)‐bearing MgSiO<jats:sub>3</jats:sub> glass up to pressures of 155 GPa, which confirmed a distinct pressure‐induced trend change in the transverse acoustic velocity (<jats:italic>V</jats:italic><jats:sub><jats:italic>S</jats:italic></jats:sub>) profile around 98 GPa, likely caused by the Si‐O coordination number (CN) change from 6 to 6<jats:sup>+</jats:sup>. Although it has been reported that the substitution of Fe<jats:sup>2+</jats:sup> in MgSiO<jats:sub>3</jats:sub> glass induces almost linear velocity reduction up to ∼160 GPa, we revealed that the <jats:italic>V</jats:italic><jats:sub><jats:italic>S</jats:italic></jats:sub> profile of (Fe<jats:sup>2+</jats:sup>, Al)‐bearing MgSiO<jats:sub>3</jats:sub> becomes anomalously steeper above ∼100 GPa and eventually came to be equivalent to MgSiO<jats:sub>3</jats:sub> glass above ∼125 GPa. This implies the incorporation of Al into Fe‐bearing MgSiO<jats:sub>3</jats:sub> glass significantly facilitates making it far elastically stiffer and thus the densification under pressures well within the Earth's lower mantle. Our results indicate the possible presence of stiff and highly dense silicate melts in deep MOs in the rocky terrestrial planets.</jats:p>

Topics
  • melt
  • glass
  • glass
  • densification