People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vinci, Tommaso
École Polytechnique
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Shock-driven amorphization and melt in Fe$_2$O$_3$
- 2023Transonic dislocation propagation in diamond.citations
- 2023Zr-based metallic glasses Hugoniot under laser shock compression and spall strength evolution with the strain rate >10$^7$ s$^{-1}$)citations
- 2023Zr-based metallic glasses Hugoniot under laser shock compression and spall strength evolution with the strain rate (> 107 s-1)citations
- 2023Transonic dislocation propagation in diamondcitations
- 2022Zr-based bulk metallic glasses equation of state under laser shock compression and spall strength
- 2022Zr-based bulk metallic glasses equation of state under laser shock compression and spall strengths.
- 2021Spin State of Iron in Dynamically Compressed Olivine Melt
- 2021Metallization of Shock-Compressed Liquid Ammoniacitations
- 2021X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilitiescitations
- 2020Equation of state and electrical conductivity of warm dense ammonia at the conditions of large icy planets' interiors.
- 2020In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressurescitations
- 2020Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperaturecitations
- 2020Ultrafast X-ray Diffraction Measurements Of shock-Compressed Fe and Fe-Si Alloys
- 2017Shock response to solid germanium
- 2016Direct structural investigation of shock compressed silicates from x-ray diffraction
- 2016Kinetics of the iron α -∊ phase transition at high-strain rates: Experiment and modelcitations
- 2014Melting of iron close to Earth's inner core boundary conditions detected by XANES spectroscopy in laser shock experiment
- 2010Large scale simulations of quasi-isentropic compression in Fe and Al
- 2009Microstructural investigation of melting in laser-shocked recovered iron foils
- 2006Laser-driven shock waves for the study of extreme matter statescitations
Places of action
Organizations | Location | People |
---|
article
Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperature
Abstract
We report in situ structural measurements of shock‐compressed single crystal orthoenstatite up to 337 ± 55 GPa on the Hugoniot, obtained by coupling ultrafast X‐ray diffraction to laser‐driven shock compression. Shock compression induces a disordering of the crystalline structure evidenced by the appearance of a diffuse X‐ray diffraction signal at nanosecond timescales at 80 ± 13 GPa on the Hugoniot, well below the equilibrium melting pressure (>170 GPa). The formation of bridgmanite and post‐perovskite have been indirectly reported in microsecond‐scale plate‐impact experiments. Therefore, we interpret the high‐pressure disordered state we observed at nanosecond scale as an intermediate structure from which bridgmanite and post‐perovskite crystallize at longer timescales. This evidence of a disordered structure of MgSiO3 on the Hugoniot indicates that the degree of polymerization of silicates is a key parameter to constrain the actual thermodynamics of shocks in natural environments.