Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ding, Shuo

  • Google
  • 2
  • 17
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024ND70 Series Basaltic Glass Reference Materials for Volatile Element (H$_2$O , CO$_2$, S, Cl, F) Measurement and the C Ionisation Efficiency Suppression Effect of Water in Silicate Glasses in SIMS2citations
  • 2020The Solidus and Melt Productivity of Nominally Anhydrous Martian Mantle Constrained by New High Pressure‐Temperature Experiments—Implications for Crustal Production and Mantle Source Evolution13citations

Places of action

Chart of shared publication
Shimizu, Kenji
1 / 1 shared
Monteleone, Brian, D.
1 / 1 shared
Guan, Yunbin
1 / 2 shared
Rose-Koga, Estelle, F.
1 / 1 shared
Baker, Michael, B.
1 / 1 shared
Ushikubo, Takayuki
1 / 1 shared
Bureau, Hélène
1 / 2 shared
Towbin, William Henry
1 / 1 shared
Moussallam, Yves
1 / 1 shared
Ma, Chi
1 / 3 shared
Naab, Fabian, U.
1 / 1 shared
Lee, Hyun Joo
1 / 1 shared
Plank, Terry
1 / 1 shared
Shi, Sarah
1 / 1 shared
Gaetani, Glenn, G.
1 / 1 shared
Khodja, Hicham
1 / 14 shared
Stolper, Edward, M.
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Shimizu, Kenji
  • Monteleone, Brian, D.
  • Guan, Yunbin
  • Rose-Koga, Estelle, F.
  • Baker, Michael, B.
  • Ushikubo, Takayuki
  • Bureau, Hélène
  • Towbin, William Henry
  • Moussallam, Yves
  • Ma, Chi
  • Naab, Fabian, U.
  • Lee, Hyun Joo
  • Plank, Terry
  • Shi, Sarah
  • Gaetani, Glenn, G.
  • Khodja, Hicham
  • Stolper, Edward, M.
OrganizationsLocationPeople

article

The Solidus and Melt Productivity of Nominally Anhydrous Martian Mantle Constrained by New High Pressure‐Temperature Experiments—Implications for Crustal Production and Mantle Source Evolution

  • Ding, Shuo
Abstract

<jats:title>Abstract</jats:title><jats:p>We constrained the solidus of a model Martian composition with low bulk Mg# (molar MgO/(MgO + FeO<jats:sub>T</jats:sub>) × 100 ~75) and high total alkali (Na<jats:sub>2</jats:sub>O + K<jats:sub>2</jats:sub>O = 1.09 wt.%) concentration at 2 to 5 GPa by experiments. Based on the new solidus brackets, we provide a new parameterization of the solidus temperature as a function of pressure of Martian mantle: <jats:styled-content><jats:italic>T</jats:italic><jats:sub><jats:italic>s</jats:italic></jats:sub>(°<jats:italic>C</jats:italic>) =  − 5<jats:italic>P</jats:italic> (<jats:italic>GPa</jats:italic>)<jats:sup>2</jats:sup> + 107<jats:italic>P</jats:italic>(<jats:italic>GPa</jats:italic>) + 1,068</jats:styled-content>. The newly constrained solidus of the Lodders and Fegley (1997; <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1006/icar.1996.5653">https://doi.org/10.1006/icar.1996.5653</jats:ext-link>) model Martian composition (LF composition) is 20 to 90 °C lower than the previous solidus of model Martian mantle with lower total alkali (~0.54 wt.%). The supersolidus experiments yield an average isobaric melt productivity, d<jats:italic>F</jats:italic>/d<jats:italic>T</jats:italic>, of 20 ± 6 wt.%/100 °C. We also bracketed the solidi of model Martian mantle compositions with low Mg# (~75) and low alkali (~0.54 wt.%), and with high Mg# (~80) and low alkali (~0.54 wt.%) at a constant pressure of 3 GPa. We find that bulk Mg# enhances the solidus temperature and bulk total alkalis suppress it. A parameterization that estimates the effect of bulk Mg# and total alkalis on peridotite solidus, including Mars and Earth, at 3 GPa can be described as: <jats:styled-content>T<jats:sub>s</jats:sub>(°C) = 4.23Mg #  − 85(Na<jats:sub>2</jats:sub>O(wt. %) + K<jats:sub>2</jats:sub>O(wt. %)) + 1,120</jats:styled-content>. Based on the new solidus parameterizations, 10–40 km more Martian crust would be produced by columnar decompression melting for LF model composition compared to the low Mg#‐low alkali model composition. The quantitative constraints on the solidus shift with Mg# and total alkalis from this study can be used to assess the Martian mantle solidus change through melting and melt extraction over time and the role of mantle heterogeneity in crustal production.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • extraction
  • melt