Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Posner, Esther

  • Google
  • 2
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Ferromagnesian jeffbenite synthesized at 15 GPa and 1200 °C4citations
  • 2019Mass Transport and Structural Properties of Binary Liquid Iron Alloys at High Pressure14citations

Places of action

Chart of shared publication
Alp, E. Ercan
1 / 5 shared
Smyth, Joseph R.
1 / 1 shared
Wang, Fei
1 / 21 shared
Jacobsen, Steven D.
1 / 3 shared
Bell, Aaron
1 / 1 shared
Steinle-Neumann, Gerd
1 / 8 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Alp, E. Ercan
  • Smyth, Joseph R.
  • Wang, Fei
  • Jacobsen, Steven D.
  • Bell, Aaron
  • Steinle-Neumann, Gerd
OrganizationsLocationPeople

article

Mass Transport and Structural Properties of Binary Liquid Iron Alloys at High Pressure

  • Steinle-Neumann, Gerd
  • Posner, Esther
Abstract

<jats:title>Abstract</jats:title><jats:p>We determine mass transport and structural properties of binary liquid iron alloys over a wide density (5.055–11.735 g·cm<jats:sup>−3</jats:sup>) and temperature range (2,500–6,500 K) using first‐principles molecular dynamics. Compositions consist of 96 at% Fe and 4 at% <jats:styled-content>ϕ</jats:styled-content>, where <jats:styled-content>ϕ</jats:styled-content> = H, C, N, O, Mg, Si, S, or Ni. Self‐diffusion coefficients (<jats:styled-content><jats:italic>D</jats:italic></jats:styled-content>) of Fe and <jats:styled-content>ϕ</jats:styled-content> range from 3.5·10<jats:sup>−9</jats:sup> to 1.9·10<jats:sup>−7</jats:sup> m<jats:sup>2</jats:sup>·s<jats:sup>−1</jats:sup>. Results show a relation between mean atomic radius and diffusivity ratio for the alloying element and iron: Si and Ni are “iron‐like” with similar atomic radii and <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> compared with those of Fe; H, C, N, O, and S are “small non‐iron‐like” with smaller atomic radii and larger <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content>; and Mg transitions from “large non‐iron‐like” with a larger atomic radius and smaller <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> at low density to iron‐like under conditions of the Earth's core. The effect of pressure on <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> for C, N, and O is negligible for densities below ~8 g·cm<jats:sup>−3</jats:sup>, accompanied by an increase in average coordination numbers to ~6, and an increase in mean atomic radii. For densities above ~8 g·cm<jats:sup>−3</jats:sup>, diffusivities and atomic radii of these elements decrease monotonically with pressure, which is typical for the iron‐like alloying elements as well as for H, Mg, and S over the whole compression range. While atomic radius ratios move toward unity with compression, diffusivity ratios for the alloying element relative to iron tend to increase for the “non‐iron‐like” elements with density.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • molecular dynamics
  • iron
  • diffusivity
  • iron alloy