People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Steinle-Neumann, Gerd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021High-Pressure Yttrium Nitride, $Y_{5}N_{14}$, Featuring Three Distinct Types of Nitrogen Dimerscitations
- 2021Synthesis of Ilmenite-type $ε$-Mn$_2$O$_3$ and Its Propertiescitations
- 2020Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonancecitations
- 2019Mass Transport and Structural Properties of Binary Liquid Iron Alloys at High Pressurecitations
- 2018A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earthscitations
- 2006High-pressure alloying of iron and xenon: “Missing” Xe in the Earth's core?citations
- 2004Ab-initio high-pressure alloying of iron and potassium: Implications for the Earth's corecitations
- 2001Importance of Magnetism in Phase Stability, Equations of State, and Elasticity
Places of action
Organizations | Location | People |
---|
article
Mass Transport and Structural Properties of Binary Liquid Iron Alloys at High Pressure
Abstract
<jats:title>Abstract</jats:title><jats:p>We determine mass transport and structural properties of binary liquid iron alloys over a wide density (5.055–11.735 g·cm<jats:sup>−3</jats:sup>) and temperature range (2,500–6,500 K) using first‐principles molecular dynamics. Compositions consist of 96 at% Fe and 4 at% <jats:styled-content>ϕ</jats:styled-content>, where <jats:styled-content>ϕ</jats:styled-content> = H, C, N, O, Mg, Si, S, or Ni. Self‐diffusion coefficients (<jats:styled-content><jats:italic>D</jats:italic></jats:styled-content>) of Fe and <jats:styled-content>ϕ</jats:styled-content> range from 3.5·10<jats:sup>−9</jats:sup> to 1.9·10<jats:sup>−7</jats:sup> m<jats:sup>2</jats:sup>·s<jats:sup>−1</jats:sup>. Results show a relation between mean atomic radius and diffusivity ratio for the alloying element and iron: Si and Ni are “iron‐like” with similar atomic radii and <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> compared with those of Fe; H, C, N, O, and S are “small non‐iron‐like” with smaller atomic radii and larger <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content>; and Mg transitions from “large non‐iron‐like” with a larger atomic radius and smaller <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> at low density to iron‐like under conditions of the Earth's core. The effect of pressure on <jats:styled-content><jats:italic>D</jats:italic></jats:styled-content> for C, N, and O is negligible for densities below ~8 g·cm<jats:sup>−3</jats:sup>, accompanied by an increase in average coordination numbers to ~6, and an increase in mean atomic radii. For densities above ~8 g·cm<jats:sup>−3</jats:sup>, diffusivities and atomic radii of these elements decrease monotonically with pressure, which is typical for the iron‐like alloying elements as well as for H, Mg, and S over the whole compression range. While atomic radius ratios move toward unity with compression, diffusivity ratios for the alloying element relative to iron tend to increase for the “non‐iron‐like” elements with density.</jats:p>