Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hilgers, Christoph

  • Google
  • 1
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Three-Dimensional Phase-Field Investigation of Pore Space Cementation and Permeability in Quartz Sandstone20citations

Places of action

Chart of shared publication
Busch, Benjamin
1 / 3 shared
Prajapati, Nishant
1 / 5 shared
Nestler, Britta
1 / 105 shared
Selzer, Michael
1 / 186 shared
Ankit, Kumar
1 / 7 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Busch, Benjamin
  • Prajapati, Nishant
  • Nestler, Britta
  • Selzer, Michael
  • Ankit, Kumar
OrganizationsLocationPeople

article

Three-Dimensional Phase-Field Investigation of Pore Space Cementation and Permeability in Quartz Sandstone

  • Busch, Benjamin
  • Hilgers, Christoph
  • Prajapati, Nishant
  • Nestler, Britta
  • Selzer, Michael
  • Ankit, Kumar
Abstract

The present work investigates the dynamics of quartz precipitation from supersaturated formation fluids in granular media, analogous to sandstones, using a multiphase‐field model. First, we derive a two‐dimensional (2‐D) Wulff shape of quartz from the three‐dimensional (3‐D) geometry and simulate the unitaxial growth of quartz in geological fractures in 2‐D in order to examine the role of misorientation and crystal c to a axis ratios (c/a) in the formation of quartz bridge structures that are extensively observed in nature. Based on this sensitivity analysis and the previously reported experiments, we choose a realistic value of c/a to computationally mimic the 3‐D anisotropic sealing of pore space in sandstone. The simulated microstructures exhibit similarities related to crystal morphologies and remaining pore space with those observed in natural samples. Further, the phase‐field simulations successfully capture the effect of grain size on (I) development of euhedral form and (II) sealing kinetics of cementation, consistent with experiments. Moreover, the initially imposed normal distribution of pore sizes evolves eventually to a lognormal pattern exhibiting a bimodal behavior in the intermediate stages. Furthermore, computational fluid dynamics analysis is performed in order to derive the temporal evolution of permeability in numerically cemented microstructures. The obtained permeability‐porosity relationships are coherent with previous findings. Finally, we highlight the capabilities of the present modeling approach in simulating 3‐D reactive flow during progressive sealing in porous rocks based on innovative postprocessing analyses and advanced visualization techniques.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • grain
  • grain size
  • phase
  • experiment
  • simulation
  • reactive
  • anisotropic
  • precipitation
  • permeability
  • porosity