Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wellington, Danika

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019An Instrument Anomaly in the Mars Exploration Rover Pancam 1,009-nm Filter (R7)citations

Places of action

Chart of shared publication
Jakobsen, Simone J.
1 / 1 shared
Madsen, Morten Bo
1 / 1 shared
Bell, James F.
1 / 2 shared
Dajose, Lorinda
1 / 1 shared
Alizai, Khaled
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Jakobsen, Simone J.
  • Madsen, Morten Bo
  • Bell, James F.
  • Dajose, Lorinda
  • Alizai, Khaled
OrganizationsLocationPeople

article

An Instrument Anomaly in the Mars Exploration Rover Pancam 1,009-nm Filter (R7)

  • Jakobsen, Simone J.
  • Madsen, Morten Bo
  • Bell, James F.
  • Wellington, Danika
  • Dajose, Lorinda
  • Alizai, Khaled
Abstract

<p>During pre-flight calibration of the panoramic camera (Pancam) instrument on board the Mars Exploration Rovers MER A (Spirit) and MER B (Opportunity), a discrepancy was noted between 11-band spectra extracted from Pancam images of the camera's radiometric calibration target and reflectance spectra obtained with a spectrometer. This discrepancy was observed in the longest-wavelength filter of the camera (the longpass R7 filter with system λ<sub>eff</sub> = 1,009 nm) and consisted of a reduction in contrast between bright and dark regions. Here we describe and characterize this effect. We propose that the effect arises because long-wavelength photons close to the silicon band-gap at 1,100 nm are allowed through the R7 filter, pass through the bulk charge-coupled device, scatter from the backside, pass through the charge-coupled device again, and are registered in a pixel other than the pixel through which they originally entered. Based on this hypothesis we develop a model capable of accurately simulating the effect, and correct for it. We present preliminary results from testing this correction on preflight, as well as in-flight, images. The effect is small, but in some specific cases in small regions of high contrast, the effect is significant. In in-flight images of Martian terrain we observed the signal in dark shadows to be artificially inflated by up to ∼ 33% and analysis of early-mission calibration target images indicated that the reduced contrast due to the artifact is equivalent to &gt;100 DN (full well = 4095 DN) for a hypothetical perfectly dark pixel.</p>

Topics
  • impedance spectroscopy
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • Silicon