Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haussener, Sophia

  • Google
  • 1
  • 3
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Determination of the macroscopic optical properties of snow based on exact morphology and direct pore-level heat transfer modeling38citations

Places of action

Chart of shared publication
Schneebeli, Martin
1 / 3 shared
Steinfeld, Aldo
1 / 6 shared
Gergely, Mathias
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Schneebeli, Martin
  • Steinfeld, Aldo
  • Gergely, Mathias
OrganizationsLocationPeople

article

Determination of the macroscopic optical properties of snow based on exact morphology and direct pore-level heat transfer modeling

  • Schneebeli, Martin
  • Steinfeld, Aldo
  • Haussener, Sophia
  • Gergely, Mathias
Abstract

A multiscale methodology for the determination of the macroscopic optical properties of snow is presented. It consists of solving the coupled volume-averaged radiative transfer equations for two semi-transparent phases – ice and air – by Monte Carlo ray tracing in an infinite slab via direct pore-level simulations on the exact 3D microstructure obtained by computed tomography. The overall reflectance and transmittance are computed for slabs of five characteristic snow types subjected to collimated and diffuse incident radiative flux for wavelengths 0.3–3�μm. The effect of simplifying the snow microstructure and/or the radiative transfer model is elucidated by comparing our results to (i) a homogenized radiation model and considering a particulate medium made of optical equivalent grain size spheres (DISORT), or (ii) a multiphase radiation model considering a packed bed of identical overlapping semi-transparent spheres. The calculations are experimentally validated by transmittance measurements. Significant differences in the macroscopic optical properties are observed when simplifying the snow morphology and the heat transfer model (i.e., homogenized versus multiphase). The proposed approach allows – in addition to determine macroscopic optical properties based on the exact morphology and obtained by advanced heat transfer model – for detailed understanding of radiative heat transfer in snow layers at the pore-scale level.

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • grain
  • grain size
  • phase
  • simulation
  • tomography