People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Binley, Andrew
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021A linked geomorphological and geophysical modelling methodology applied to an active landslidecitations
- 2019Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potentialcitations
- 2019Laboratory spectral induced polarisation signatures associated with iron and manganese oxide dissolution because of anaerobic degradationcitations
- 2019Geoelectrical signatures of redox processes
- 2015Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cellcitations
- 2015Anomalous solute transport in saturated porous mediacitations
- 2015Anomalous solute transport in saturated porous media : linking transport model parameters to electrical and nuclear magnetic resonance properties
- 2013Laboratory SIP signatures associated with oxidation of disseminated metal sulphidescitations
- 2012A stochastic analysis of cross-hole ground-penetrating rada zero-offset profiles for subsurface characterizationcitations
- 2006Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data.citations
- 2005Electrical properties of partially saturated sandstones.
Places of action
Organizations | Location | People |
---|
article
Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data.
Abstract
Appropriate regularizations of geophysical inverse problems and joint inversion of different data types improve geophysical models and increase their usefulness in hydrogeological studies. We have developed an efficient method to calculate stochastic regularization operators for given geostatistical models. The method, which combines circulant embedding and the diagonalization theorem of circulant matrices, is applicable for stationary geostatistical models when the grid discretization, in each spatial direction, is uniform in the volume of interest. We also used a structural approach to jointly invert cross-hole electrical resistance and ground-penetrating radar traveltime data in three dimensions. The two models are coupled by assuming, at all points, that the cross product of the gradients of the two models is zero. No petrophysical relationship between electrical conductivity and relative permittivity is assumed but is instead obtained as a by-product of the inversion. The approach has been applied to data collected in a U.K. sandstone aquifer in order to improve characterization of the vadose zone hydrostratigraphy. By analyzing scatterplots of electrical conductivity versus relative permittivity together with petrophysical models a zonation could be obtained with corresponding estimates of the electrical formation factor, the water content, and the effective grain radius of the sediments. The approach provides greater insight into the hydrogeological characteristics of the subsurface than by using conventional geophysical inversion methods.