Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, V. E.

  • Google
  • 1
  • 4
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle58citations

Places of action

Chart of shared publication
Speziale, S.
1 / 7 shared
Pasternak, M. P.
1 / 3 shared
Jeanloz, R.
1 / 6 shared
Lin, J. F.
1 / 1 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Speziale, S.
  • Pasternak, M. P.
  • Jeanloz, R.
  • Lin, J. F.
OrganizationsLocationPeople

article

Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle

  • Speziale, S.
  • Pasternak, M. P.
  • Jeanloz, R.
  • Lin, J. F.
  • Lee, V. E.
Abstract

<p>High-pressure x-ray diffraction of (Mg<sub>0.80</sub> Fe<sub>0.20</sub>)O at room temperature reveals a discontinuity in the bulk modulus at 40 (±5) GPa, similar to the pressure at which an electronic spin-pairing transition of Fe<sup>2+</sup> is observed by Mössbauer spectroscopy. We determine the zero-pressure bulk modulus of low-spin magnesiowüstite to be between K<sub>70</sub>=136 and 246 GPa, with a pressure derivative (<i>∂Kτ/∂P</i>)<i>τ</i><sub>0</sub> between 5.2 and 3.9. The best fit unit-cell volume at zero pressure, <i>V</i><sub>0</sub>=71 (±5) Å, is consistent with past estimates of the ionic radius of octahedrally-coordinated low-spin Fe<sup>2+</sup> in oxides. A spin transition at lower-mantle depths between 1100 and 1900 km (40-80 GPa) would cause a unit-cell volume decrease (ΔV) of 3.7 (±0.5) to 2.0 (±0.1) percent and bulk sound velocity increase (Δv<sub>ø</sub>) of 7.6 (±4) percent at 40 GPa and 7.6 (±1.2) percent at 80 GPa. Even in the absence of a visible seismic discontinuity, we expect the spin transition of iron to imply correction to current compositional models of the lower mantle, with up to 10 mol percent increase of magnesiowüstite being required to match the seismological data.</p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • elasticity
  • iron
  • bulk modulus
  • Mössbauer spectroscopy