Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valk, Cm Van Der

  • Google
  • 2
  • 5
  • 687

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 20053D microenvironment as essential element for osteoinduction by biomaterials541citations
  • 2004Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials146citations

Places of action

Chart of shared publication
Meijer, G.
2 / 4 shared
Habibovic, Pamela
2 / 31 shared
Groot, K. De
2 / 4 shared
Yuan, Huipin
1 / 5 shared
Van Blitterswijk, Clemens A.
2 / 21 shared
Chart of publication period
2005
2004

Co-Authors (by relevance)

  • Meijer, G.
  • Habibovic, Pamela
  • Groot, K. De
  • Yuan, Huipin
  • Van Blitterswijk, Clemens A.
OrganizationsLocationPeople

article

Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

  • Meijer, G.
  • Habibovic, Pamela
  • Groot, K. De
  • Van Blitterswijk, Clemens A.
  • Valk, Cm Van Der
Abstract

<p>In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials.</p><p>Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT-PBT) copolymer, all uncoated and coated with biomimetically produced OCP, were implanted in back muscles of 10 goats for 6 and 12 weeks. Uncoated Ti6Al4V and HA did not show any bone formation after intramuscular implantation. All OCP coated implants, except PEGT-PBT did induce bone in the soft tissue. The reason for the non-inductive behaviour of the copolymer is probably its softness, that makes it impossible to maintain its porous shape after implantation. Both uncoated and OCP coated BCP induced bone. However, the amount of animals in which the bone was induced was higher in the coated BCP implants in comparison to the uncoated ones.</p><p>Osteoinductive potential of biomaterials is influenced by various material characteristics, such as chemical composition, crystallinity, macro- and microstructure.</p><p>OCP coating has a positive effect on osteoinductivity of the biomaterials. The combination of the advantages of biomimetic coating method above traditional methods, and a good osteoinductivity of OCP coating that is produced by using this method, opens new possibilities for designing more advanced orthopaedic implants. (C) 2004 Kluwer Academic Publishers.</p>

Topics
  • porous
  • impedance spectroscopy
  • chemical composition
  • titanium
  • titanium alloy
  • Calcium
  • copolymer
  • biomaterials
  • crystallinity
  • coating method